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ABSTRACT

Abundance of marine stocks fluctuate in response to both internal processes (e.g, densit

dependence)..ancexogenous drivers including the physical environment, fishingand
trophodynamiciinteractiondn the United Stategesearchnvestigatingecosystendrivers has
beenfocused indatarich systems, primarily in the North Atlantic aNerth Pacific. To develop

a more halistic understanding mhportantecosystem drivers in the Southeast W&@tinental
shelf LargesMarine Ecosystem, vappliedgeneralized lineaand dynamic linearmodeling to
investigatethe dfects of climate and fishing covariatem the relative abundance trendsf 71
demersafish/and invertebrate species sampled by a coastal trawl stuvieyg 19962013.For

the assemblagas a whole, fishing effects predominated over climate efféctparticular,
changes in_trawling effomwithin the penaeid shrimp fishery governed abundaresedsof bony
fishes, invertebrates, and elasmobranclikely result of temporachanges in bycatch mortality.
Changes in“trawling intensity induced changes in overall community composition and tappea
have altered trophic interactions among particular spesiesng climate indices investigated,
the Pacific Decadal Oscillatioand the Western Bermuda High Indexre most prevalent in
well supporteddynamic linearmodels. Observed annuabundance trends were synchronous
among 'seme=taxonomicalhglated species, highlighting similar respondes exogenous
influences based on lifeistory. This study strengthens the foundationdenerating hypotheses

andadvancing ecosystetmased fisheries research within the region.

INTRODUCTION

Fisheries ‘scientists have long recognized tltaogical processesan cause fluctuations in
populatien-abundancéaird, 1873; HellandHansen and Nansen, 1909), lly in recent
decadeshave ecological considerations been widely investigatedigheries researcheind
broadly consideredithin fisheriesmanagementThis focal shift has been large part due to the
establishment and continued refinementooigterm surveys an@n ecosysterrbased fisheries
management (EBFMyamework(Bianchi and Skjoldal, 2008; Link, 2010; Belgrano and Fowler,
2011; Christensen and Maclean, 20l)hough EBFM is being incorporated intgolicy at the
highest levels oUnited State§MSRA, 2007; 13547, 201@nd international governmen(@ay

et al, 2008; Jennings and Rice, 2011), lack of scientific supgtibirthampes the integration of
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ecosystem processes in fisheries management of stocks worl{BkderMauritzen et al,
2016).

Taking an ecosystem approach to fisheries (EAF), the batfmanalog to EBFMLink,
2010), requires fundamental understanding of the exogeéactass(i.e., non-internal population
processes such as dengigpendencehatinfluenceliving marine resourced.ink et al. (2010)
describe a,'triad’ ofactorsor processeshat regulatgpopulationdynamics ofmarine biotaat
scalesfrom™species to ecosystemsl) biophysical, 2) trophodynamic, and) exploitative.
Biophysical*factors include climate effects, well as planktonic production, whicne largely
governed! by environmental conditions (Miller, 2004)rophodynamic processes affect
population.dynamics either through bottam or topdown forcing depending on a speciesle
in the food*webPopulation impacts fromxeloitation aretypically through direcharvestsand
bycatch mortality but fishing activitiescan alsoalter stock productivity vidabitat alteration
(Jennings and Kaiser, 1998jshinginduced evolution(Enberget al, 2012), or trophic re
organization (Pusceddet al, 2014) For individual fishstocks, the amalgamated effects thfe
triad of processesietermineabundance by influencing vital rates including growth, survival,
recruitment and reproductive outpOttersenet al, 2004; Lehodeet al, 2006; Shelton and
Mangel, 2011; Holloweet al, 2013).

The-first exogenous factor in thieiad includes physical factorsuch agprimary and
secondary planktonic production, which are relevant to early life stages ofmaame fish and
invertebratepopulations.The matchmismatch hypothesigCushing, 1974, 19755 one well-
knownmeghanism by whicplanktonic productiorffects early life stages dish populations. If
ocean envirenmental conditions are favorable suchpthaktonic foodresources are abundantly

available,high larval growth and survivakhould result in a strong yeanlassif density-

dependence iweak To maximize this synchrony, many marine species have evolved to spawn

during pertiods.of high primary and secondary productifityrneret al, 1979; Shermaet al,
1984; Cushing, 1990)At the ecosystem scale, lower trophic level production correlates with
fisheries yields, demonstrating consistent bottgreffects at broad spatial scal@riedlandet
al., 2012).

Climateis a biophysical factor thatot only influences lower trophic level interactions
within populationsbutmayalso directlyimpactgrowth and survivalFor instance, the larvae of

broadcast spawners are largatythe mercy obceancurrents, deviations in which could result in
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weak or failed recruitment eggs andarvae are advected tmfavorablehabitat(Hjort, 1914)
For some species, especially those with protracted spawning strategressubtle changes in
growth and mortality of early life stagesi@to an interaction of biophysicabnditions (e.g.,
environmental conditias, food availability)and densitydependencenay bemore influential to
yearclass strength than dramatic episodic evdhtsude, 1989) Anomalous environmental
conditions,can‘influence adudurvival as wel| for instancemortality events associated with
severe "“temperatureonditions (Hurst, 2@7). Such variability in dcal or regional ocean
environmental“conditionare oftenlinked to atmospheric climatescillations at much broader
scales in a distda ocean or climate basiThe phenomenon of broatale linkage in planetary
circulationgpaterns istermed ‘teleconnection’Bridgman and Oliver, 2006 Climate indices
amalgamate climate conditions at spatial and temporal scales appropriate for invedtigating
dynamic of marinepopulationsat a regionascale(Stensettet al, 2003).

In addition to affecting population vital ratesymamic ocean conditions alsdter species
ranges, as. well as spawning and migration phenology as individuals seek blalsita to
physiologicaleptimgCollie et al, 2008; Drinkwateet al, 2010; Peer and Miller, 20143patial
distribution® shifts in response to seasonal cycles, rdattadal oscillations, or long&rm
change inwenvironmental conditions can influence availability of fish to fished surveys,
possibly_biasing abundance estimai@tersenet al, 2004; Blancharat al, 2008; Nyeet al,
2009; Morleyet al, 2018) Understanding the mechanisms for how climate variability affects
vital rates,,abundance, and the distribution of fish and shellfish stocks remains der@nsi
challenge,

The'secondexogenous factor irthe triad is bottomup or topdown trophodynamic
interactions thamay affect stockabundanceAn outburst of available prey may allow a predator
species ta.increase energy reserves, thus resulting in increased reprqahtetitial (bottom-up
effect Buchheisteret al, 2015; Mcbrideet al, 2015) Alternatively, a species that experiences
predation willundergo an overalpopulation size reductiotop-down effect) Accounting for
predation_martality came critical for setting appropriate management reference pQinteell
et al, 2011)especially for forage fishg3yrrell et al, 2008) Compared to local scale studies,
the effects of multtrophic interactions are more difficult to quantify at largpatial scales that

encompass entireopulations due to intensive data requirements.
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The third process in theink et al. (2010) triad of exogenous population-regulating
factors is exploitation, or fishingrishery removals (harvest and discards) diredtigrease
mortality and decrease stock abundancand can influence certain vital rates such as
reproductive outputJenningset al, 2001). Althoughthe mostdirect effects of fishing on stocks
are typically-topdown through direct removals, damagestsential habitadr reduction inprey
resources caused lighing or fishing gearcanreducethe productivity of higher trophic level
stocks(Auster-and Langton, 1998 mith et al, 2013) Of the triad of drivers, only the effects
from fishing"can beffectively managed; natural processes such as climate and trophodynamics
are observable but not alterable at the spatial scale of a biological population.

Withinesthe U.S. Southeast continental shelf Large Marine Ecosystem (hereafter
“Southeast*U:S. LME”) multiple studieshave leveragedime series data fomvestigating
exogenousmpacts o fish and invertebrate populatierprimarily focusing on climate effects
and individual specied.amet al, 1989; Parker Jr. and Dixon, 1998; Munch and Conover, 2000;
Belcher and Jennings, 2004; Hare and Able, 2007; Gatch, 2007; Egglestort al, 2010;
Hare et aly%2010, 2012; Coltoret al, 2014; Munyandorero2014; Harfordet al, 2014)
However ecosysteroriented researckhat consideranultiple species andbng-term driving
factorsislackingwithin the Southeast U.S.ME relative to other ecosystems in the U.S. and
globally (MeFadden and Barnes, 2009; Hollowedal, 2013) especiallystudies focused on
multiple species and driving factor$he impetus for our study was to expand the body of
knowledge. regarding how the triad of exogenouspopulation drivers impactiological
populationswithin the Southeast U.S. LME. In particular, we sought to determine thty a
multiple climate indices and metrics of fishing mortality for predicting abundance dynamacs of
large suiteof coastal fish and invertebrate stocks as measured by a fisldegendent trawl
survey. While we do postulate mechanistic underpinnings for the dynamics of cpéeeigssn
response .to_exogenous factors, this work should be viewed as a springboatdurfer f

investications at finer levels of scale.

METHODS

Biological sampling

An important data source faoastalstocksin the Southeast).S. LME is the Southeast Area
Monitoring and Assessment Progran.S. South Atlantic (SEAMAFSA) (SEAMAP-SA Data
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149 Management Work Group, 2014This fisheryindependent bottom trawl survey has been
150 conducted by South Carolina Department of Natural Resources (Charleston, ss@hekthrice

151 annually (spring, summer, and fall) since 1989 within 8wtheast U.S. LMHBrom Cape

152 Hatteras, NC to Cape Caraal, FL. SEAMAP-SA employs a stratified fixed station design,
153 whereby a pr@letermined number of fixed stations are chosen for seasonal sampling from a pool
154  of all possible stationdistributed acrossix samplingregionsand within a depth range of 30

155 ft. (Fig."1)"At'each sampling station, two tongue trawl n@t3.5m wingspanjretowed on the

156 bottom for 20"minutes from a doublgged 23m St. Augustine shrimp trawleThe catchis

157 brought orboard, suksampled (if necessary) and sorted, all individuals identified to species and

158 enumerated, and allometric data collected for cepaority species.

159 Statistical'moedeling

160 We evaluatedhe influencef climate and fishindactorson Southeast U.S. LMEoastal fish
161 populations usinggeneralizedand dynamiclinear models We first generatedstandardized
162 indices of relative abundance for each species using generalized linear wibidlekschnical
163 tow-level covariatesfollowed by an investigation afrivers of abundance using dynamic linear
164 modelsywith=¢limate and fishingpvariatesAll statistical analysewere conducted in RTeam,
165 2015)(seeSupporting Informatioror specific packages used).

166 We focused omgpeciesthat werecaptured by SEAMAFRSA in all 24 yeass of the study
167 periodfrom 1990-2013. Becies not capturegaerenniallycould either have low abundangeue
168 rarity) or low surveycatchability in either case, we did not estimatenual abundanesdor these
169 rarely caughtspecies We examinedavailability and abundance informatidior each species
170 duringeachsampling season (spring, AfMay; summer,Jul.-Aug.;fall, Oct-Nov.) andwithin
171 eachsamplingregion If a species was largely absent from a samptigion or during a
172 particulariseasofi.e., low or no availahily), thosetrawl setswere eliminated to reduce the
173 numberof uninformativezerosthat occured due to sampling outside trsgiecies’seasonabr
174  spatialrange(Austin and Meyers, 1996; Martiet al, 2005).

175 Standardizedlaundance indices

176 To generatestandardizedannual indicesof relative abundangewe modelednumbers of
177 individuals per towwith covariates using generalized linear models (GLNt$glder and
178 Wedderburn, 19723nd zereinflated generalized linear models (ZIGLM&ambert, 1992; Hall,
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2000). Multispecies surveys that sample across long ecological gradients oftendesign,
survey, and observer errors for individual species, thus commonly resulting iimftated data
(Kuhnertet al, 2005) Zeroinflated models account fdalse zerosunexpected in reference to
the specified undey/ing probability distribution Within both GLM and ZGLM frameworks we
considered_Poisson and negative binomial probability distributions (FigT&ile S]1 see
Supporting, Material for additional detgil&~or most species, a zerdlated negative binomial
model wasmost appropriate; a negative binomial distribution was more appropriate than a
Poisson for~all' speciesAt this stage of analysighe following technical covariatesvere
considered year, sason,samplingregion, depth, total biomass of other specieshmtrawl
sample effart(as an offset)and if the atch was subsampled (Table S&)e fitted main effects
models for-all“possible combinations of technical covariates and retained the withdéie
lowestAIC, value(Sugiura, 1978).

For_eachspecies’'most supportedsLM, we estimated annualelative abundance by
averaging themarginal mearpredictionsfor each yearSearleet al, 1980) Uncertaintyfor
predictionswere estimatedia yearstratified bootstrapping# = 15,000) (Efron, 1983)as the
percent coefficient of variation(CV) (Gotelli and Ellson, 2004) We also generated bias
corrected~and accelerate@((,) 95% confidence interval§Cls) for comparison toforecast
variancesggeneratedor dynamic linear model&eebelow) If a species time series hédar more
(= v of the time serieg)redictionswith CVs > 100%, that speciesvas eliminatedrom further

analysis We also removed individual annual predictianth CVs > 200%.

Climate and fishing hypotheses

We hypothesized multiple climate and fishing factors to be potential drivedsuoidance. The
majority=of climate covariates consisted of indices that describe climate anomalies or oscillations
derived from spatial differences in atmospheric pressure or sea surface temperdiur®1§8%

of these indices are recognized teleconnastiand all are known to confer variability to ocean
conditions within the Southeast U.S. LME (Table 1; Fig. S2). Gelkon covariates included

the North,Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), the PacdithN
American Patterin winter (PNAy), and the Southern Oscillation Index (SOI). We lagged-cold
season covariates 0 and 1 years, where lag O included data for winter morgh$1éDe

immediately prior to SEAMAFSA sampling. For example, the value for a lag 1 -sa&ldson
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covariate was an average of monthly values during Decembereaf, through March of
years, 1, With corresponding observed biological effects during spring throughdat ,,. We
hypothesized winter conditions associated with these climate oscillations éahpastal or
juvenile growth and survival (e.g., Hare and Able, 2G@4ags 0 or 1, and migration phenology
at lag 0.

Warmseason covariatemcluded the Atlantic Multdecadal Oscillation (AMO), the
Pacific North"American Pattern in summer (PYAthe Western Bermuda High Index (WBHI),
and average sea bottom temperature (SBT). We also considered the Atlanidd¢h (AWP),
which is a measerof the area of SST warmer than 28.mm the Western Central Atlantic Ocean
(Wanget al, 2006) but ultimately excluded this metric based on its high correlation with the
AMO (Wang et al, 2008) during the study periodR( = 0.9). We hypothesized summer
conditions associated with these climate oscillations may impact growth and recruitment of early
life stages_at lags 0 or 1, and migration phenology at lag 0. Weason covariates were lagged
differently_based on seasonality of GLM predictions and the extent of knowledge mggagei
compositionyint SEAMAPSA catches. If a species’ standardized GLM index included only
spring data, we lagged warseason covariates 1 and 2 years (no lag 0). If an index included
summer or.falldata, warrrseason covariates were lagged 0 and 1 years. If an index included
summer.but not fall data, wareeason lag O indices were recalculated as an average of monthly
covariate values from Mayuly rather than MaySeptember. Additionally, we includddg 2
warm-season_covariates for species whose primary abundance signal are kn@sanoedato
include age 2%animals (Table8)S We lagged SBT 0 years to account for temperadtiken
changes inwavailability resulting from interannual differences in atimr phenology (see
Supporting Material, Fig. S3).

Fishing covariates included annual shrimp fishery effort (all species)négn(B5 of 71
species),and.estimated instantaneous fishing mortality (9 species) (see Supporting Material,
Figs. S4 and.S5). We included shrimp fishery effort (input agréogformed total annual
commercialitrips) as a proxy for relative changes in bycatch mortality within the pshaeig
fishery (Walter,and Isley 2004becauseempirical bycatch mortality estimates for all species
were unavailable for thstudy period. We obtained annual commercial and recreational fishery
landings data (input as ldgansformed total biomass) from the Atlantic Coastal Cooperative

Statistics Program(ACCSP 201%» Fishing mortality estimates were gleaned from stock
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assessment reports for recently assessed species. We lagged all fishing covariategeapsto 3
depending on known or assumed maximum age; most fishes had lag3 pédrs and most
invertebrates 42 years (see Table3Sor exceptions). For appropriate scale comparisons, all
climate and fishing covariates wezescored (subtracted the mean and divided by the standard

deviation) prier tadynamc linear modeling

Modeling climate and fishing effects
We investigatedlimateand fishing drivers of abundance for each remaining spduies series
using uniyariate dynamic linear models (DLM#$)ole et al., 1994; Lamon lllet al, 1998;
Scheuereletal, 2002) Eachlog-transformed abundanabservationy in yeart was modeled
as

Ve = FtTet + v, (1)
where F, and"@, are vectos of regression variableand parameters, respectively, are
observatian errors with, ~ N(0,r), and

0: =6, +w (2)
wherew; are process errors witly, ~ MVN(0, Q) (Holmeset al, 2014) The DLM framework
assumes a‘locally ndimear relationship between a given response and predictor varfddie
assumptionallowed us flexibility to explorenumerous response/predictor combinations
relationships for many of which may not be linear.

For each species, wétéd DLMs for all possible combinations of climate and fishing
covarides with a minimum of zeroovariates (interceginly model)up toone climate and one
fishing covariate (maximum two covariateper model. To reduce multcollinearity, two-
covariate models were not fittedif they contained combinations of covariates that were
significantly“correlated Pearson’s produghoment correlation testr = 0.1). For eachunique
combination of covariates, we considered multiple variance parameterizttiopocess and
observation errorg¢Table 2). For models with covariateprocess errors inw, were either 1)
assumed independent and identically distributed or 2) assumed independent but potentially
distributedwdifferentlyFor all models, th€ diagaal element corresponding to intercept process
error variance was fixed at zei©bservation error variance)(was either estimated within the
DLM, or fixed at the average annupércentcoefficient of variationestimatedfrom GLM

bootstrapping.For each species, we retained for further analysis aetinverged models
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270 (maximum 10,000 iterations, convergence tolerance F With AAIC, values< 10, where
271 AAIC, = AIC, — min (AIC,). Amongspecies, unique combinations of covariates ranged from 23
272 10136 and theotal model set size includingror variance parameterization opticlamged from
273 70to 488Table S3.

274 For assessing performanoéindividual models, we obtained expected values of yae-
275 forecasted,abundancesth corresponding variances (in Iepace)calculatedusing aKalman
276 filter algorithm™We checked forecast errors (termed “innovations”) égregious violations of
277 normality "and“independence using Studet{Tests and autocorrelation functioa € 0.05),
278 respectivelyWe assessetbrecastbiasby calculating thdRoot Mean §uared Error (RMSEfor
279 each forecastseries in log spédeendman and Koehler, 2006):

280 RMSE = /Y (Y; — fo)?/n (3)

281 wheref is the forecast for observatidnat timet.

282 Forgeach retained model, we determined the persistente afmbinationof covariates
283 by comparing=timeruncated modeldo vet the staying powerof a given parametewithin
284 modelsas yearswere ‘peeled’ off the time serie{Mohn, 1999; Milleret al, 2016) This
285 approach is analogous to examining retrospective pattermsagestructuredstock assessment
286 model.We generatetime-truncated datase by removing one year of dagdher at the proximal
287 or terminal.end.of the time serié¥e define persistenceof a given covariatas

288 0 =30, (L)w, (4)

289 wherec;; is the number of occurrences of covariata m truncated models based &l time
290 series (nostruncated)modelj, and w; is the Akaike weight(AIC,,; Burnham and Andson
291 2002)for montruncated model. The parametep is aproportionbounded by and 1We fixed
292 m at10;5 proximal year peeland 5 terminal year peelBor the purposes of calculating lag
293 identitieswere removedrom covariates For ingance if model 1 containedlag 0 SOl and
294 model 2 containedag 1 SOI, ¢; would be ‘SOI’ for both.

295 To quantify the overallmportance of a covariate to all species or a group of speates

296 define‘prevalenceas

_lei
297 D, = o (5)
298 where}): @; is the sumof persistence values fapvariatei across speciesnd); ¢ is thegrand

299 sum of persistence values across species and all covarfateglentify covariates with
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consistently significant unidirectional effectsve quantiied an Akaikeweighted index

describing the ‘magnitude of effédor time-dynamic regression parameter estimates
(pos—neg)ija
Tio = Xy (T—j> w; (6)
J
where pos “andneg are the number of yeatis which potentially timevarying coefficient
estimatedor z-scored covariatéin modelj weresignificantly different from zero at alpha level

a, T is the length of time serigalways 24year9, andw; is defined as in Eq..4.agidentities

were removed.from covariat@sior to calculating”, which is bounded byl and 1.Magnitude

of effect also implicitly incorporates covariatgersistencecovariates nopresentin all non
truncded models for a given species are penalfregortional to the sum of the Akaike weights

for models.in whichhe covariate was absei@pecies that had significant parameter estimates
with different Signsthat counteract one anothére., signrswitching) will have diminished
magnitude of effectalues(i.e., closer to Q)Time-varying parameter dgnates that switch signs

may indicate a change in the mechanistic relationship between the variate and covariate.
However, given the exploratory nature of the studg, wereonly interested incharacterizing

covariate effectsvith consistentinidirectiona effects throughime.

Multivariate analysis

To comparestemporal abundance pattenm®ngspecies, w conducted multivariate ordination
using z-scored marginal meanGLM predictions. © visualize communityevel patterns in
abundance*ehangege conducted principal components analysis (P@Ah GLM-generated
mean marginal predictions wheeach yeawasa separate descriptddand perchOiplectrum
formosum and dusky flounderSyacium papillosuinwere excluded from this analysis due to
extremelylow log-spacepredictions for certain yearthese years were excluded in DLMs for

these species

RESULTS

Linear modeling

Of the 101 coastal fish and invertebrate species modalsthg GLMs (Table S4, we
investigatedclimat and fishingeffectsfor 71 specieshat hadacceptable CVs fo¥ of the 24
yeartime serieqTable 3). Shrimp fishery effort was the most prevalent covariate in dynamic

linear models for all broad taxonongeoups, indicating this was the most common covariate in
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time series modeléTable 4) This proxy for bycatch mortality was much more prevalent than
any climate effectShrimp fishery effortprevalence(®) was &%, 3H%, and 44% for bony
fishes, invertebrates, and elasmobranchs, respectivelyimp fishery efforthad moderate
(75% < @.= 50%) to high (¢ = 75%) persistencan time-truncated models for 12 and 15
species respectively, indicating that this covariate was retained inmtbst supported model
more than 50% of the time after removal of up to five years of data from the start orteed of
24 yeartime series. For comparison, all eight climate variables combined had just 9wjlecies
moderate “péersistenc&urthermore, of the 27 species with adeoate to high persistence for
shrimp fishery effort, 20 hashagnitude of effectaluesgreater than 60%I'| = 0.6), indicating

that estimatedwregression coefficients for this covariate differed from zero duriagtad08o of
years in the'time series (Fig). For species with direct harvest data, a ‘landings’ covariate was
also relatively prevalent2@%) in models among bony fish€3able 4) For three species
(Centropristis__striata Chaetodipterus faberand Menticirrhus littoralis landings lad a
magnitude,of effect of at least O(Ffig. 2). However, theelationship between landings a@d
striata andM:littoralis was positivejndicatingpossible spurious effext Strongpersistenceor
magnitude“of+effector a covariate does not verify a mechanistic relationship, but does provide
evidence of.gossiblelinkage between thexogenous factand stock abundance that should be
vetted further through additional investigation.

Compared to fishing covariates,inshte covariates were much less predominant in
species models despite the consideration of eight different climate indlinesgwarm-season
climate covariates the Western Bermuda High IngBHI) was themostcommon in DLMs
with 10% owverall prevalencgTable 4), persistence greater than 50% for three speanels,
moderatemagnitude of effec{|I’'| > 0.5) for four species (Fig. 2)The Pacific North American
Pattern in.summer (PN& was seconanost prevalent for warreeason climate covariates, while
the Atantic.Multi-decadal Oscillation (AMO) and sea bottom temperature anomalies (SBT)
were least prevalent. PNAwas persistent in more than 50% of weighted models for three
species (Table 4Prevalence values for cefiéason climate covariates wexso relgively low
for most taxon, groups, although the Pacific Decadal Oscill§f@) was moreprevalentin
invertebratemodels(14%). Three species exhibited negative associations with and had moderate
magnitude of effect(Fig. 2) for the PDO:Callinectes simis, Portunus spinimanysand

Centropristis striata
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361 Five crustacean species had negative and counterintuitive associations with shr
362 fishery effort (these species are also vulnerable to bycatch), suggesting possiets efticts
363 from increased predation frod tiburo(Fig. 2, Fig. 3). Assumptions ébrecast error normality
364 (t-tests,a = 0.05) and independence (not strongly autocorrelated at @y tveremet foreach
365 species’ mossupported modgAAIC,. = 0), results from which are depicted in Fig.. E6recat
366 bias measured aRMSE, varied more sobetween species (range23to 181, where zero

367 indicates no'biaghanwithin models for a given speci€Bable %).

368 Species comparisons

369 A biplet of the first two principal components explaining the most varigtamulative
370 31%)in multispecies abundance predictidligstratestime serietrend commonalities among
371 species and=taxon groufdBig. 4). Notabk groupings includdive crustacearspecies(top;
372 ArenaeusreribrariusCallinectessapidus C. similis, Portunus spinimanysandSquilla empusg

373 four skate and ray speciémiddleleft; Dasyatis sabinaD. say Gymnuramicrura, andR.

374 eglanterig, and two common small coastal shakst{om;Rhizoprionodon terranova&phyrna
375 tiburo). Species in quadrant 1 (top right) were more abundant earlier in the time series, ispec
376 quadrant2«(top:left) were abundant during the middle 2000s, while species in quadratand (bot
377 left) were more abundant later in the time serl@sryteuthisspp. exhibited an abundance
378 trajectorydifferent from most other species with peaks near 2000 and(g0&drant 4, bottom
379 right). A higher number of species with negative PC1 values is consistent with an overall
380 increase in community abundanthroughout the time seri¢Richardson and Boylan, 2014

381 biplot of the descriptoaxes(i.e., years)ndicate a period of most rapid change in community
382 abundances=during the 2000s, especially during 2001 to (Fo§45). Based on biplot species
383 groupings;»bLM forecasts and regression coefficient estimatesS.fotiburo and the five
384 aforementioned crustaceans are comparédg. 3(see Discussion).

385

386 DISCUSSION

387 The overallgoal for this work wasto expandgeneral understanding of hasxogenoudactors
388 influence abundance dynamics for coastal fishes and invertebrates withoulleeast U.S.
389 LME. Results indicate that each thie factorsdescribed byink et al. (2010) — trophodynamic,
390 exploitative, andiophysical- exert influence on the abundance dynamicsevkralspeciesve
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examinedIn many casetaxonomicallyrelated speciexhibitedsynchronousbundance trends
and associations with covariates, suggesting twatking knowledge of life history
characteristicprovides guidancéor explaining these connections. In all cases, our results and
interpretations should be viewed as a foundation for future ecosystesa research within the

regionat finer.spatial and temporal scafes each species or taxonomic/trophic group.

Indirect fishing effectson trophodynamics

During the,_study period, shrimp fleet effort decreased due to an economic downturn in the
fishery (SEDAR, 2014) Five crustacea and one baon fish speciesexhibited apositive
relationshipwith shrimp fishery efforthat waspersistent and strong magnitude of effect (Fig. 2):
Arenaeus cribrariusCallinectes sapidysC. similis Portunus spinimanyssquilla empusaand
Urophycissfleridana While there areno empirical shrimp bycatch time ses available for the
U.S. South=Atlantic penaeid shrimp fishei§cottDenton et al. (2012) and Brown (2014)
provide a’ snapshot summary of bycatch trends during the late 200®&rth Carolina,C.
sapidus S. empusal. floridana and portunid crabs comprisedtotal of 9% of non-shrimp
biomass caught icommercial shrimp trawgearfrom July 2007 to June 2008 (Brown, 2014)
Throughout=the U.S. South Atlantic regioQ,. sapidusand non-identified‘crustaceans’
comprised19%"d all nonshrimp biomass during July 2007 through December 2(8€btt
Denon et al,"2012) Although kycatch reduction devices (BRDs) have besed withinthis
fishery within federal waters since 19971ASMFC, 2011) these speciesr groups remain
frequently captured within the fishery. Due to the small maximum body sizeedltthy these
species and empirical evidence that they are in fact byciedsitive relationship between
abundancegsand: shrimp fishery effort that we foisncbunterintuitive.

An.explanation for the positive relationship between trawling effort and abundaree of t
five crustaceans is that the rebound of the bonnethead shankrfia tiburd has resulted in
increased tojglown control on these species. The shrimp fleet effort time series may be acting as
proxy for the abundance dynamics of this predator known to feed primarily on earstac
especially. partunid crali€ortéset al. 1996; MAS, unpublished datajhe most recer$. tiburo
stock assessment attributes an overall population increase after 2000 in large lpyedtch
reduction following BRD implementatioSEDAR, 2013b). Results from the current study
support this conclusiors. tiburoabundance was higher overall in the 2000’s compared to the

1990’s (Fig. 3A), and shrimp fishery effort wasrederatelypersistent ¢ > 50%) negative
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422  predictor with moderatenagnitude of effec(|'| = 0.7) in the weltit (RMSE = 0.29) most
423 supported model for this species. Based on opposing trer@idibtiroand its prey species (Fig.
424  3), multispecies modeling is warranted for these trophiealgted spcies. While the
425 bonnethead is likely not the onpyedator for these species, it may be acting as a general proxy
426 for increasessin abundance of higher trophic level predators Rag, eglanteria Gymnura
427 micrura) following a reduction in shrimp fishewffort andoverall loweredbycatchrisk for the
428 assemblage

429 Oneadditional hypothesis for the decline srustacean abundanwathin the nearshore
430 zone is that an overall decrease in bycatch discards by the shrimp fishery has redacedtite
431 of carrion availableto portunidcrabswhose died include scavengetbod. In theory, increased
432 food availability and decreased energy expenditure on food handling would increate rgtes
433 and potentially) reproductive output. The carrion reductiypothesis codl be tested via
434 manipulative_experiments amdaferences based anore robust bycatch data, especially prior to
435 when BRDs _were mandatedohnson (2006jlemonstrated thatlle crals stronglypreferred
436 bycatch carrion to natural prey, lendingupport for this hypothesis. Changes in botigm
437 (carrionreduction) and togplown (predation increase) trophodynamics cdwaldesynergistically
438 led to anoverall decline of one or more of these ecologigalhpgrtant crustacean species.

439 Direct fishing effects

440 Biomassremovalsfrom fishingresult in adirectdecrease in population abundance,ordy one
441 species out of 3BChaetodipterus fabghada moderate andegativemagnitude of effedior the
442 covariate Landings’(Fig. 2) Stock status o€. faberhas not beeformally assessed, buesults
443 indicate thatandingsmaybe great enough to elicit a populati@vel change in abundancehe
444  covariatefishing mortality(‘Total F’) (Fig. S5)wasnot persistenin models ofany species for
445 which eStimated time series were available frstock assessmen®verall null resuls for the
446 fishing covariates ‘Landings’and ‘Total F' could be due tol) bottom-up environmental
447  conditionsor top-down trophodynamgbeingoverriding drives of abundance dynamicg) the
448 maqitude. of landingsot beinghigh enough telicit a detectablgpopulation responsg.e., low
449 exploitationrate), or 3) SEAMAP-SA notbeinga representative inddrr the stock For species
450 with landings but which are not actively managed, the first and second hypathegkesisible
451 the third is not testable without additional data sourGéshe nine species for whiclstemated

452 ‘Total F’ time serieswere availableweakfish C. regalig, summer flounderR. dentatuy
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butterfish P. triacanthu$, bluefish P. saltatriy, and scup $tenotomuswere based primarily on
data frommore northerly areashus hypothesis three is likely for these spediédsile Atlantic
sharpnoseR. terranovag and bonnetheads( tiburg are recognized to exhibit separate Gulf of
Mexico and Atlatic stocks, the most recenpdateassessmerfor each speciesombined these
two regions,based on precedent from previous benchmark asses&pidddR, 2013a,b)The
spatial mismatch éiween SEAMAPSA and assessments for thés® coastal sharkenay have
resultedin“nullT otal F’ results.

Shrimp-fleet effortexhibiteda persistent negative associatwith moderate tostrong
magnitude of effectfor fourteen species- nine bony fish, four elasmobranch, and one
invertebrate species (Fig. 2l of these speciegxcepttwo (Persephonamediterraneaand
Prionotus “earelinuy are documented bycatch specieghe region within the penaeid shrimp
trawl fishery (ScottDentonet al, 2012; Brown, 2014)Iin all casesgstimatedabundances for
these species were higher during the second half of the time series during which shrimp fleet
effort and.assumed ovdrabycatch were lower compared wuring the 1990’s.Although
decreasessin=effort occurred concomitantly with BRD mandmiesided to reduce bycatch
mortality, decreased effonnay bedriving abundance increases for these speuni@® so than
BRDs given, thatthey still remainvulnerable to bycatcim shrimp fishery geardespite BRD
requirements. Elasmobranchsparticular have benefited from this decrease in fishery activity
indicated by prevalence @ of 44% for shrimp fishery effortoverall negive associationsvith
‘Effort’ inall cases (Fig. S6and documented bycatohpacts tosmall coastal sharKSEDAR,
2013b,a).

Biophysicaleffeets

Compareditdishing effects, many fewer species exhibited atame changes in response to
climate Among warmseason climate variables, none had outstanding prevalence within species
models. Amongold-season climate variables, the Pacific Decadal Oscill§B®0) wasmost
prevalent in invertebrate modekllthough moderately so, biltis covariatehad only moderate
persistencein time-truncated modeldor just three species.The one climate variable that
guantifiedlocal environmental conditions, sea bottom temperature (SBT), had palyidaiar
prevalence values among all taxon groupasken together,hese unremarkable climate results
are in stark contrast to studies temperate Northeast U.S. LME waters, where oscillatory

climate patterns and directional ocean warntiage been extensivetiocumented to be causing
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dramatic ecological shift& multiple populations that are major playerdhe food welk{Collie

et al, 2008; Araujo and Bundy, 2012; Ne¢ al, 2014) In this era of dramatic climate shifts in
more temperate ocean watdemnperature forcing maye inherently less impactftd longterm
distribution and, abundance trendsnatural living resources within subtropical waters of the
Southeast U.S. LMBMViorley et al, 2017).

Although no species had a strongagnitude of effecfor the PDO, this teleconnéah
was moderately prevalent 6} within invertebrate modelsThe PDO and SOl are related
measures~of“the complex @ea interactions characteristic of ElI Nifio Southern Oscillation
(ENSO) events in the tropical Pacific, which confer variability in atmosphanid ocean
conditions.acress the globe includiwghin the southeast U.S. Atlant{&lexande et al, 2002)

The influence of PDO on precipitation, river discharge, and estuarine sadigityes have been
demonstrated for a coastal Georgia ri(&neldon and Burd, 2014nd the Chesapeake Bgu

et al, 2012), but we are not aware of any studies linking the PDO to dynamics of livimgemar
resources in the southeast U.S. Our results indicate that amorgeamd climate indices, the
PDO maybesthe best amalgamation of winter weather condiMortey et al. (2017)alsoshow
winter conditions to affeatoastal invertebrataistribution and biomassa subsequent spring and
summer seasonsithin the Southeast U.S. LMHhe influence of the PD@ssociated winter
conditionssormarine assemblagés the regiordeservedurther investigation.

In the Northeast U.SLME, taxonomic and abundance shifts in planktonic communities
have been, shown taespondto temperatureelated changes induced by nudécadal climate
oscillationsanddirectionalocean warmindgPershinget al, 2005; Greene and Pershing, 2007;
Morse et aly=2017). Shifts in abundance and composition in lower trophic levels can have
cascading effects for higher trophic level organisms, botl{\Wighneret al, 1995)and small
(Beaugranckt al, 2003) Bottomup trophodynamic effects on fish populations in the Southeast
U.S. LME have been studie@Weinsteinet al, 1981; Yoder, 1983; Govoret al, 2013)
However,evaluating hypotheses regarding lower trophic effects ontlermg trends in Southeast
U.S. LME_fish and invertebrate populations requires more robust planktonic datavitet
temporal sampling regularityVe are not ware ofanylocal in situ or regionalsatellitebased
studies examinindongterm changes in primary productivity, phytoplankton composition, or
zooplankton withinthe ecosystem Given the difficulties of accurately estimating remotely

sensed primary productivity in turbid coastal watéssegel et al, 2013) in situ plankton
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sampling concomitant with  SEAMABA demersalfaunal sampling would providehigher

quality data for investigating benthic-pelagic linkages and bottpreffects.

Migration phenology

Sampling effort for the SEAMARSA coastal trawl survey is focused the most biodiverse and
biomassrich areas of sofbottom habitat within in the Southeast U.S. LME coastal ocean. The
survey does not sample estuarine or offshore habitats that many nearshae aligecutilize
during certain seasons. To limit thetg@atial bias in abundance estimates given this sampling
limitation, swe™oenly investigated species with an acceptable level of uncertainty in annual
abundanceestimates and only in seasons where there were perennially consistenFuaaiohes.
investigatios of this dataset could benefit from alternative model frameworks with the goal of
reducing uneertainty in indicesf abundance by accounting for spatial and temp@iadiom
effects(e.gs=Sheltoret al, 2014; Thorsort al, 2015).

Additionally, we recognize that only relative and not absolute indices of abundamce ¢
be derived 'om SEAMARSA and other similar datasets within specialized habitat zones. If our
estimated relative abundance indices were generally biased, we would have expected higher
prevalence=of«the local environmental covariate sea bottom temperature (SBT), vasich w
included to detect any annual anomalies in migration phenology induced by seasppé&dtigma
cues. OQutof 71 species, SBT did not have high prevalence for any species group, nor was it
persistent_or have stromgagnitude of effector any species. This null result suggethiat the
SEAMAP-SA dataset may be largely robust to bias in abundance estimates stemming from
timing differencs in seasonal weather patterrSor populations with distributions soundly
within twoser=more ecosysins (e.g..Southeast and Northeast U.S. LNJEsoordinating the
samplingsmetheds, timing, and coverage of fisheries surveys that are spafiddors should be
further emphasize(Blanchardet al, 2008).

Conclusions

Our results*suggeshat changes in trawling intensity for the penaeid shrimp fishery have been
the most influential determining factor for medpecies péerns of change within the nearshore
Southeast U.S. LME since 1990. Trawling effort and assumed bycatch was higin éaglyiine
series, dropped precipitously from 1999 to 2005, and plateaued at a relatively lothdesafter

(Fig. S2. The period of most rapid change in community composition occurred during the same
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545 time frame (Fig5), resulting in an overall increase in abundance for the majority of nearshore
546 species. BRD implementation at the onset of this period of rapid charedg #&celerated

547 relative abundance rebounds for many of these species. Prevalence of trawling effort in species
548 specific DLM results lend support for fishimgduced shifts in overall community abundance
549 and compaositionDue to some level dishing-inducedrestructuring apparent in the nearshore
550 food web, we reiterate the call Bjarancik and Hare (20079r the establishment of lorgrm

551 diet sampling“programs in the Southeast U.S. LME; such prognane enabled informative

552 multi-species'modeling efforts in the Northeast U.S. Shelf L(MEkK et al, 2012)and North

553 Pacific (Livingstonet al, 2017).

554 Duringsthe same time frame that shrimp trawling intensity was rapidly decreasing, the
555 PDO and 'SOlsunderwent rapid but sHored phase shifts (Mills and Walsh, 2013he AMO

556 also entered ajpositive phase around the 2680 (Nye et al, 2014), thus further adding to
557 possible confounded effects of fishing and climate. Longer biological tines sse needed to

558 clarify the'impacts of these lefirequency climate signals on fish abundance. In the interim, the
559 simplest explanation is that direct anthropogenic impacts freining have exerted the most
560 influence on this system.

561 Future directions

562 Although we detected fishing, climate, amdlirect trophodynamic effectfor several species

563 the majority of species exhibited inconsistent or undetectable responses to clich&shiag

564 covariates. The overall lack of explanatory power for any given species is likely a product of
565 simultaneous and complex forcing from fishing, the physical environment, biological
566 interactionsy=and densiyependent effects, often making it difficult to establish unequivocal
567 linkages=between changes in the physical environment and stock abuiO#ecsenet al,

568 2004; Rijnsdoret al, 2009; Megreyet al, 2009; Deyleet al, 2013) Investigating ecosystem

569 linkages is made more challenging by incomplete life history and ¢atoctmation. In the

570 Southeast U.S, LME, future specigsecific analyses investigating exogenous drivers would
571 benefit from more complete age composition data, greater extent of diet characterization
572 (especially for upper trophic level predators), apdciesspecific bycatch rates.

573 Specific to climate impacts, a more refined understanding is needed of how
574 teleconnections influence loestale oceanographic conditioredevant topopulationsn coastal

575 waters of the Southeast U.S. LME (e.g., temperature, salinity, wind, and planktonic
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productivity). Boadscale climate indices amalgamate these local variandshus have their
advantages in ecologicahodeling (Stensethet al, 2003) However organisms respond to
conditions in their proximate environment at much finer temporal and spatiad ftateannual
climate indices can captur&s such, future climatésheries studies within the region should not
only investigatecorrelations betweelargescale climate effectandpopulations, but the effects
of largescale climate forcing on specific oceanographic conditions that in turruqeod

detectablgopulationtevel effect.
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Table 1. Descriptions of climate covariates considered in dynamic linear models. Correlation

values R, + or —) are for the period of 1982013. Time series for all climate covariates are

depicted in Fig. S2, except for Sea Bottom Temperature which is depicted in Fig. S3.

Covariate

Calculation

Impacts to southeast U.S. Atlantic

conditions

Atlantic Multi-decadal
Oscillation (AMO)

Area-weighted average of
North Atlantic SST from 9
70°N latitude, detrended and
unsmoothed (NCAR, 2013)
average of monthly values
during May-Sep

+ (—) phase? (|) SST, 1 (|) precipitation
during Aug- Oct, 1 (|) tropical cyclone
activity (Enfield et al., 2001; Wang et al.,
2008). Correlated with NAO (0.44) and
PNAw (0.43;+).

North Atlantic
Oscillation (NAO)

Principal component (PC)-

based sea level pressure

+ (=) phase? (|) temperatures (Joyce, 2002;
Bridgman and Oliver, 2006); correlated witt

anomalies over the Atlantic AMO (0.44-)

sector (2680°N, 90°W—
40°E) (NCAR, 2015)
average of monthly winter

(Dec-Mar) values

Pacific Decadal
Oscillation (PDO)

Statistical reconstruction of
in situ SST in the North
Pacific Ocean (NCDC,
2015); average of monthly

winter (Dee-Mar) values

+ (—) phase| (1) temperatures and possibly
1 (|) precipitation in winter (Mantua and
Hare, 2002; SCO, 2015); correlated with
PNAy (0.50;+) and SOI (0.61)

Pacific Noth-
American Pattern,
summer (PNA) and
winter (PNAw)

Anomalies in the 500mb
geopotential height field
observed over the western
and eastern U.S. (CPC,

PNAs: 1 (|) warm-season precipitation
(Henderson and Vega, 1996); correlated wi
WBHI (0.34,-)

PNAw: + (=) phase| (1) winter

2015a); average of monthly temperatures (Leathers et al., 1991; SCO,

summer (PNA; May-Sep)

2015); correlated with AMO (0.438), PDO
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and winter (PNAy; Dec- (0.50;#) and SOI (0.565)

Mar) values
Southern Oscillation  Normalized sea level + (—) phaseLa Nina (E1 Nino); 1 (])
Index (SOI) pressure differences temperatures and | (1) precipitation in winter

between Tabhiti and Darwin, (Joyce, 2002); correlated with PDO (0.5Y,
Australia (CPC, 2015b) and PNAy (0.50;-). Driven by sea surface
average of monthly winter temperature (Bridgman and Oliver, 2006).
(Dec-Mar) values

Western Bermuda Pressure differences (850- + (—) phase? (|) summer precipitation,
High Index (WBHI) hPa heights) between the similar to the better known Bermuda High
Blake Plateau (30°N, 75°W)  Index (BHI) (Henderson and Vega, 1996;
and New Orleans (30°N, Diem, 2013); correlated with PNAO0.34-)
92°W) (Kalnay et al., 1996)
average of monthly values
during May-Sep (see

Supporting Information)

Sea Bottom SEAMAP-SA tow-level Proxy for temporal changes in availability o
Temperature(SBT)  data; annual average of z- species due to variation in temperature-
anomaly scored anomalies for each induced seasonal or extreme event migratic
combination of season and patterns
sub-region combination (se

Supporting Information)
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Table 2. Variance parameterizations for each unique combination of covariates. Process error variances for covesjsesiedtre
on the diagonal of th@ matrix (see Eq. 2). Observation error variangsee Eq. 1) was either estimated by dynamic linear modeling

or fixed at the average annual coefficient of variation estimated from GLM bootstrapping.

No. of covariates Q options r options Model set size
Zero (intereept-only model) 1) InterceptQ estimated 1) estimated, 2) fixed 2
One (1 climate or 1 fishing) 1) CovariateQ estimated 1) estimated, 2) fixed 3
Two (1 climate and 1 fishing) 1) CovariateQ's estimated, assumed equal 1) estimated, 2) fixed 4

2) CovariateQ's estimated, assumed unequ
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12
13
14

Table 3. Species for which climate and fishing effects were investigated using dynamic linear

models. Species for three genera (Eucinostomus, Stenotomus, Doryteuthis) were grouped for

analysis due to difficulties of rapid on-board survey taxonomic identification. Species

identification numbers are referenced in Table 4.

Latin name Common name Latin name Common name
Bony fishes Bony fishes cont’d
1 Ancylopsettasommata Ocellated flounder 38  Sphyraena guachancho Guaguanche
2 Bairdiella chrysoura Silver perch 39  Stellifer lanceolatus Star drum
3 Centropristis,philadelphica Rock sea bass 40  Stenotomus spp. Scup / Longspine porgy
4 Centropristis striata Black sea bass 41  Stephanolepis hispida Planehead filefish
5 Chaetodipterus faber Atlantic spadefish 42 Syacium papillosum Dusky flounder
6 Chilomycterus'schoepfii Striped burrfish 43  Symphurus plagiusa Blackcheek tonguefish
7 Chloroscombrus chrysurus Atlantic bumper 44  Synodus foetens Inshore lizardfish
8 Citharichthys macrops Spotted whiff 45  Trachinotus carolinus Florida pompano
9 Citharichthys spilopterus ~ Bay whiff 46  Trichiurus lepturus Atlantic cutlassfish
10  Cynoscion nothus Silver seatrout 47  Trinectes maculatus Hogchoker
11  Diplectrumformosum Sand perch 48  Urophycis floridana Southern hake
12 Echeneis'naucrates Sharksucker Elasmobranchs
13  Etropusicrossotus Fringed flounder 49  Dasyatis sabina Atlantic stingray
14  Etropusieyclosquamus Shelf flounder 50 Dasyatis say Bluntnose stingray
15  Eucinostomus,spp. Mojarras 51  Gymnura micrura Smooth butterfly ray
16 Lagodon rhomboides Pinfish 52  Mustelus canis Smooth dogfish
17  Larimus fasciatus Banded drum 53 Raja eglanteria Clearnose skate
18 Leiostomus xanthurus Spot 54  Rhinoptera bonasus Cownose ray
19 Menticirrhus/americanus  Southern kingfish 55  Rhizoprionodon Atlantic sharpnose shark
20  Menticirrhus littoralis Gulf kingfish terraenovae
21  Micropogonias undulatus  Atlantic croaker 56  Sphyrna tiburo Bonnethead shark
22 Opisthonemasaglinum Atlantic thread herring Invertebrates
23  Orthopristis chrysoptera Pigfish 57  Arenaeus cribrarius Speckled swimming crab
24 Paralichthys albigutta Gulf flounder 58 Callinectes ornatus Ornate blue crab
25  Paralichthys dentatus Summer flounder 59  Callinectes sapidus Blue crab
26  Paralichthys lethostigma  Southern flounder 60 Callinectes similis Lesser blue crab
27  Peprilusparu Harvestfish 61  Doryteuthis spp. Inshore squids
28  Peprilusitfiacanthus Butterfish 62  Hepatus epheliticus Calico box crab
29 Pomatomus saltatrix Bluefish 63  Litopenaeus setiferus Northern white shrimp
30 Prionotus carolinus Northern searobin 64  Lolliguncula brevis Atlantic brief squid
31 Prionotus evolans Striped searobin 65  Ovalipes ocellatus Lady crab
32  Prionotus tribulus Bighead searobin 66  Ovalipes stephensoni Coarsehand lady crab
33 Sardinella aurita Spanish sardine 67  Pagurus pollicaris Flatclaw hermit crab
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34
35
36
37

Scomberomorus cavalla

Scomberomorus maculatus Spanish mackerel

Scophthalmus aquosus

Selene setapinnis

King mackerel

Windowpane

Atlantic moonfish

68
69
70
71

Persephona mediterrane: Mottled purse crab

Portunus gibbesii
Portunus spinimanus

Squilla empusa

Iridescent swimming crab
Blotched swimming crab

Mantis shrimp
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15
16
17
18
19

20

Table 4. Prevalencé (Eq. 5) of climate and fishing covariates in time-truncated dynamic linear models, and species with at least 50%
persistencep (Eq. 4) for a given covariate. Species identification numbers referenced for persistence are specified in Table 3.
Landings and total fishing mortality information were available for 35 and 9 species, respectively. Prevalence percentages are
calculatediseparately for all species (‘All’), bony fishes (BF), elasmobranchs (E), and invertebrates (I). Species with persistence

@ = 75% are bolded and those wiih= 100% are also asterisked.

Type Covariate  No. of Prevalence® Species with persistence > 0.5
species All BF E I (numbers refer to species in Table 3)
Warm — WBHI 71 10% 11% 10% 8% 1,29,46
PNAs 71 8% 8% 8% 9% 5,6, 62
AMO 71 5% 5% 50 4%
SBT 71 4% 5% 3% 4%
Cold PDO 71 9% 8% 8% 14% 4
SOl 71 7% 6% 5% 9% 30
PNAw 71 7% 7% 6% 7% 28
NAO 71 4% 5% 1% 3%
Fishing “Shrimp 71 30% 26% 44% 35% BF:1,6,7,12 16, 17, 2128, 30, 31, 37, 43, 45, 4648
fishery E: 49 50,51, 52 53, 56
effort I 57* 59 60* 68,70, 71
Landings 35 19% 22% 5% 11% 4,5, 20, 36
Total F 9 10% 10% 12%
Intercept None 71 4% 4% 3% 4%
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