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 26 

ABSTRACT 27 

Abundance of marine stocks fluctuate in response to both internal processes (e.g., density-28 

dependence) and exogenous drivers, including the physical environment, fishing, and 29 

trophodynamic interactions. In the United States, research investigating ecosystem drivers has 30 

been focused in data-rich systems, primarily in the North Atlantic and North Pacific. To develop 31 

a more holistic understanding of important ecosystem drivers in the Southeast U.S. continental 32 

shelf Large Marine Ecosystem, we applied generalized linear and dynamic linear modelling to 33 

investigate the effects of climate and fishing covariates on the relative abundance trends of 71 34 

demersal fish and invertebrate species sampled by a coastal trawl survey during 1990-2013. For 35 

the assemblage as a whole, fishing effects predominated over climate effects. In particular, 36 

changes in trawling effort within the penaeid shrimp fishery governed abundance trends of bony 37 

fishes, invertebrates, and elasmobranchs, a likely result of temporal changes in bycatch mortality. 38 

Changes in trawling intensity induced changes in overall community composition and appear to 39 

have altered trophic interactions among particular species. Among climate indices investigated, 40 

the Pacific Decadal Oscillation and the Western Bermuda High Index were most prevalent in 41 

well supported dynamic linear models. Observed annual abundance trends were synchronous 42 

among some taxonomically-related species, highlighting similar responses to exogenous 43 

influences based on life history. This study strengthens the foundation for generating hypotheses 44 

and advancing ecosystem-based fisheries research within the region. 45 

 46 

INTRODUCTION  47 

Fisheries scientists have long recognized that ecological processes can cause fluctuations in 48 

population abundance (Baird, 1873; Helland-Hansen and Nansen, 1909), but only in recent 49 

decades have ecological considerations been widely investigated by fisheries researchers and 50 

broadly considered within fisheries management. This focal shift has been in large part due to the 51 

establishment and continued refinement of long-term surveys and an ecosystem-based fisheries 52 

management (EBFM) framework (Bianchi and Skjoldal, 2008; Link, 2010; Belgrano and Fowler, 53 

2011; Christensen and Maclean, 2011). Although EBFM is being incorporated into  policy at the 54 

highest levels of United States (MSRA, 2007; 13547, 2010) and international governments (Day 55 

et al., 2008; Jennings and Rice, 2011), lack of scientific support still hampers the integration of 56 
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ecosystem processes in fisheries management of stocks worldwide (Skern-Mauritzen et al., 57 

2016). 58 

Taking an ecosystem approach to fisheries (EAF), the bottom-up analog to EBFM (Link, 59 

2010), requires fundamental understanding of the exogenous factors (i.e., non-internal population 60 

processes such as density-dependence) that influence living marine resources. Link et al. (2010) 61 

describe a ‘triad’ of factors or processes that regulate population dynamics of marine biota at 62 

scales from species to ecosystems:  1) biophysical, 2) trophodynamic, and 3) exploitative. 63 

Biophysical factors include climate effects, as well as planktonic production, which are largely 64 

governed by environmental conditions (Miller, 2004). Trophodynamic processes affect 65 

population dynamics either through bottom-up or top-down forcing depending on a species’ role 66 

in the food web. Population impacts from exploitation are typically through direct harvests and 67 

bycatch mortality, but fishing activities can also alter stock productivity via habitat alteration 68 

(Jennings and Kaiser, 1998), fishing-induced evolution (Enberg et al., 2012), or trophic re-69 

organization (Pusceddu et al., 2014). For individual fish stocks, the amalgamated effects of the 70 

triad of processes determine abundance by influencing vital rates including growth, survival, 71 

recruitment, and reproductive output (Ottersen et al., 2004; Lehodey et al., 2006; Shelton and 72 

Mangel, 2011; Hollowed et al., 2013). 73 

The first exogenous factor in the triad includes biophysical factors such as primary and 74 

secondary planktonic production, which are relevant to early life stages of many marine fish and 75 

invertebrate populations. The match-mismatch hypothesis (Cushing, 1974, 1975) is one well-76 

known mechanism by which planktonic production affects early life stages of fish populations. If 77 

ocean environmental conditions are favorable such that planktonic food resources are abundantly 78 

available, high larval growth and survival should result in a strong year-class if density-79 

dependence is weak. To maximize this synchrony, many marine species have evolved to spawn 80 

during periods of high primary and secondary productivity (Turner et al., 1979; Sherman et al., 81 

1984; Cushing, 1990). At the ecosystem scale, lower trophic level production correlates with 82 

fisheries yields, demonstrating consistent bottom-up effects at broad spatial scales (Friedland et 83 

al., 2012). 84 

Climate is a biophysical factor that not only influences lower trophic level interactions 85 

within populations, but may also directly impact growth and survival. For instance, the larvae of 86 

broadcast spawners are largely at the mercy of ocean currents, deviations in which could result in 87 
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weak or failed recruitment if eggs and larvae are advected to unfavorable habitat (Hjort, 1914). 88 

For some species, especially those with protracted spawning strategies, more subtle changes in 89 

growth and mortality of early life stages due to an interaction of biophysical conditions (e.g., 90 

environmental conditions, food availability) and density-dependence may be more influential to 91 

year-class strength than dramatic episodic events (Houde, 1989). Anomalous environmental 92 

conditions can influence adult survival as well, for instance mortality events associated with 93 

severe temperature conditions (Hurst, 2007). Such variability in local or regional ocean 94 

environmental conditions are often linked to atmospheric climate oscillations at much broader 95 

scales in a distant ocean or climate basin. The phenomenon of broad-scale linkage in planetary 96 

circulation patterns is termed ‘teleconnection’ (Bridgman and Oliver, 2006). Climate indices 97 

amalgamate climate conditions at spatial and temporal scales appropriate for investigating the 98 

dynamics of marine populations at a regional scale (Stenseth et al., 2003).   99 

In addition to affecting population vital rates, dynamic ocean conditions also alter species 100 

ranges, as well as spawning and migration phenology as individuals seek habitat closer to 101 

physiological optima (Collie et al., 2008; Drinkwater et al., 2010; Peer and Miller, 2014). Spatial 102 

distribution shifts in response to seasonal cycles, multi-decadal oscillations, or longer-term 103 

change in environmental conditions can influence availability of fish to fishers and surveys, 104 

possibly biasing abundance estimates (Ottersen et al., 2004; Blanchard et al., 2008; Nye et al., 105 

2009; Morley et al., 2018). Understanding the mechanisms for how climate variability affects 106 

vital rates, abundance, and the distribution of fish and shellfish stocks remains a considerable 107 

challenge. 108 

The second exogenous factor in the triad is bottom-up or top-down trophodynamic 109 

interactions that may affect stock abundance. An outburst of available prey may allow a predator 110 

species to increase energy reserves, thus resulting in increased reproductive potential (bottom-up 111 

effect; Buchheister et al., 2015; Mcbride et al., 2015). Alternatively, a species that experiences 112 

predation will undergo an overall population size reduction (top-down effect). Accounting for 113 

predation mortality can be critical for setting appropriate management reference points (Tyrrell 114 

et al., 2011), especially for forage fishes (Tyrrell et al., 2008). Compared to local scale studies, 115 

the effects of multi-trophic interactions are more difficult to quantify at larger spatial scales that 116 

encompass entire populations due to intensive data requirements. 117 
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The third process in the Link et al. (2010) triad of exogenous population-regulating 118 

factors is exploitation, or fishing. Fishery removals (harvest and discards) directly increase 119 

mortality and decrease stock abundance, and can influence certain vital rates such as 120 

reproductive output (Jennings et al., 2001). Although the most direct effects of fishing on stocks 121 

are typically top-down through direct removals, damage to essential habitat or reduction in prey 122 

resources caused by fishing or fishing gear can reduce the productivity of higher trophic level 123 

stocks (Auster and Langton, 1999; Smith et al., 2013). Of the triad of drivers, only the effects 124 

from fishing can be effectively managed; natural processes such as climate and trophodynamics 125 

are observable but not alterable at the spatial scale of a biological population.  126 

 Within the U.S. Southeast continental shelf Large Marine Ecosystem (hereafter 127 

“Southeast U.S. LME”), multiple studies have leveraged time series data for investigating 128 

exogenous impacts on fish and invertebrate populations, primarily focusing on climate effects 129 

and individual species (Lam et al., 1989; Parker Jr. and Dixon, 1998; Munch and Conover, 2000; 130 

Belcher and Jennings, 2004; Hare and Able, 2007; Garcia et al., 2007; Eggleston et al., 2010; 131 

Hare et al., 2010, 2012; Colton et al., 2014; Munyandorero, 2014; Harford et al., 2014). 132 

However, ecosystem-oriented research that considers multiple species and long-term driving 133 

factors is lacking within the Southeast U.S. LME relative to other ecosystems in the U.S. and 134 

globally (McFadden and Barnes, 2009; Hollowed et al., 2013), especially studies focused on 135 

multiple species and driving factors. The impetus for our study was to expand the body of 136 

knowledge regarding how the triad of exogenous population drivers impact biological 137 

populations within the Southeast U.S. LME. In particular, we sought to determine the utility of 138 

multiple climate indices and metrics of fishing mortality for predicting abundance dynamics of a 139 

large suite of coastal fish and invertebrate stocks as measured by a fishery-independent trawl 140 

survey. While we do postulate mechanistic underpinnings for the dynamics of certain species in 141 

response to exogenous factors, this work should be viewed as a springboard for future 142 

investigations at finer levels of scale.143 

 144 

METHODS 145 

Biological sampling 146 

An important data source for coastal stocks in the Southeast U.S. LME is the Southeast Area 147 

Monitoring and Assessment Program – U.S. South Atlantic (SEAMAP-SA) (SEAMAP-SA Data 148 
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Management Work Group, 2014). This fishery-independent bottom trawl survey has been 149 

conducted by South Carolina Department of Natural Resources (Charleston, SC) personnel thrice 150 

annually (spring, summer, and fall) since 1989 within the Southeast U.S. LME from Cape 151 

Hatteras, NC to Cape Canaveral, FL. SEAMAP-SA employs a stratified fixed station design, 152 

whereby a pre-determined number of fixed stations are chosen for seasonal sampling from a pool 153 

of all possible stations distributed across six sampling regions and within a depth range of 15-30 154 

ft. (Fig. 1). At each sampling station, two tongue trawl nets (13.5-m wingspan) are towed on the 155 

bottom for 20 minutes from a double-rigged 23-m St. Augustine shrimp trawler. The catch is 156 

brought on-board, sub-sampled (if necessary) and sorted, all individuals identified to species and 157 

enumerated, and allometric data collected for certain priority species. 158 

Statistical modeling 159 

We evaluated the influences of climate and fishing factors on Southeast U.S. LME coastal fish 160 

populations using generalized and dynamic linear models. We first generated standardized 161 

indices of relative abundance for each species using generalized linear models with technical 162 

tow-level covariates, followed by an investigation of drivers of abundance using dynamic linear 163 

models with climate and fishing covariates. All statistical analyses were conducted in R (Team, 164 

2015) (see Supporting Information for specific packages used). 165 

We focused on species that were captured by SEAMAP-SA in all 24 years of the study 166 

period from 1990–2013. Species not captured perennially could either have low abundance (true 167 

rarity) or low survey catchability; in either case, we did not estimate annual abundances for these 168 

rarely caught species. We examined availability and abundance information for each species 169 

during each sampling season (spring, Apr.-May; summer, Jul.-Aug.; fall, Oct.-Nov.) and within 170 

each sampling region. If a species was largely absent from a sampling region or during a 171 

particular season (i.e., low or no availability), those trawl sets were eliminated to reduce the 172 

number of uninformative zeros that occurred due to sampling outside that species’ seasonal or 173 

spatial range (Austin and Meyers, 1996; Martin et al., 2005). 174 

Standardized abundance indices 175 

To generate standardized annual indices of relative abundance, we modeled numbers of 176 

individuals per tow with covariates using generalized linear models (GLMs) (Nelder and 177 

Wedderburn, 1972) and zero-inflated generalized linear models (ZIGLMs) (Lambert, 1992; Hall, 178 
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2000). Multispecies surveys that sample across long ecological gradients often incur design, 179 

survey, and observer errors for individual species, thus commonly resulting in zero-inflated data 180 

(Kuhnert et al., 2005). Zero-inflated models account for false zeros unexpected in reference to 181 

the specified underlying probability distribution. Within both GLM and ZIGLM frameworks, we 182 

considered Poisson and negative binomial probability distributions (Fig. S1, Table S1; see 183 

Supporting Material for additional details). For most species, a zero-inflated negative binomial 184 

model was most appropriate; a negative binomial distribution was more appropriate than a 185 

Poisson for all species. At this stage of analysis, the following technical covariates were 186 

considered: year, season, sampling region, depth, total biomass of other species in the trawl 187 

sample, effort (as an offset), and if the catch was subsampled (Table S2). We fitted main effects 188 

models for all possible combinations of technical covariates and retained the model with the 189 

lowest AIC� value (Sugiura, 1978). 190 

For each species’ most supported GLM, we estimated annual relative abundances by 191 

averaging the marginal mean predictions for each year (Searle et al., 1980). Uncertainty for 192 

predictions were estimated via year-stratified bootstrapping (� = 15,000) (Efron, 1983) as the 193 

percent coefficient of variation (CV) (Gotelli and Ellison, 2004). We also generated bias-194 

corrected and accelerated (���) 95% confidence intervals (CIs) for comparison to forecast 195 

variances generated for dynamic linear models (see below). If a species time series had 6 or more 196 

(≥ ¼ of the time series) predictions with CVs ≥ 100%, that species was eliminated from further 197 

analysis. We also removed individual annual predictions with CVs ≥ 200%. 198 

Climate and fishing hypotheses 199 

We hypothesized multiple climate and fishing factors to be potential drivers of abundance. The 200 

majority of climate covariates consisted of indices that describe climate anomalies or oscillations 201 

derived from spatial differences in atmospheric pressure or sea surface temperature (SST). Many 202 

of these indices are recognized teleconnections and all are known to confer variability to ocean 203 

conditions within the Southeast U.S. LME (Table 1; Fig. S2). Cold-season covariates included 204 

the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), the Pacific North 205 

American Pattern in winter (PNAW), and the Southern Oscillation Index (SOI). We lagged cold-206 

season covariates 0 and 1 years, where lag 0 included data for winter months (Dec.–Mar.) 207 

immediately prior to SEAMAP-SA sampling. For example, the value for a lag 1 cold-season 208 
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covariate was an average of monthly values during December of ����� through March of 209 �����+1, with corresponding observed biological effects during spring through fall �����+2. We 210 

hypothesized winter conditions associated with these climate oscillations impacted larval or 211 

juvenile growth and survival (e.g., Hare and Able, 2007) at lags 0 or 1, and migration phenology 212 

at lag 0. 213 

Warm-season covariates included the Atlantic Multi-decadal Oscillation (AMO), the 214 

Pacific North American Pattern in summer (PNAS

Fishing covariates included annual shrimp fishery effort (all species), landings (35 of 71 232 

species), and estimated instantaneous fishing mortality (9 species) (see Supporting Material, 233 

Figs. S4 and S5). We included shrimp fishery effort (input as log-transformed total annual 234 

commercial trips) as a proxy for relative changes in bycatch mortality within the penaeid shrimp 235 

fishery (Walter and Isley 2014) because empirical bycatch mortality estimates for all species 236 

were unavailable for the study period. We obtained annual commercial and recreational fishery 237 

landings data (input as log-transformed total biomass) from the Atlantic Coastal Cooperative 238 

Statistics Program (ACCSP 2015). Fishing mortality estimates were gleaned from stock 239 

), the Western Bermuda High Index (WBHI), 215 

and average sea bottom temperature (SBT). We also considered the Atlantic Warm Pool (AWP), 216 

which is a measure of the area of SST warmer than 28.5˚C in the Western Central Atlantic Ocean 217 

(Wang et al., 2006), but ultimately excluded this metric based on its high correlation with the 218 

AMO (Wang et al., 2008) during the study period (� = 0.9). We hypothesized summer 219 

conditions associated with these climate oscillations may impact growth and recruitment of early 220 

life stages at lags 0 or 1, and migration phenology at lag 0. Warm-season covariates were lagged 221 

differently based on seasonality of GLM predictions and the extent of knowledge regarding age 222 

composition in SEAMAP-SA catches. If a species’ standardized GLM index included only 223 

spring data, we lagged warm-season covariates 1 and 2 years (no lag 0). If an index included 224 

summer or fall data, warm-season covariates were lagged 0 and 1 years. If an index included 225 

summer but not fall data, warm-season lag 0 indices were recalculated as an average of monthly 226 

covariate values from May–July rather than May–September. Additionally, we included lag 2 227 

warm-season covariates for species whose primary abundance signal are known or assumed to 228 

include age 2 animals (Table S3). We lagged SBT 0 years to account for temperature-driven 229 

changes in availability resulting from interannual differences in migration phenology (see 230 

Supporting Material, Fig. S3). 231 
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assessment reports for recently assessed species. We lagged all fishing covariates up to 3 years 240 

depending on known or assumed maximum age; most fishes had lags of 1–3 years and most 241 

invertebrates 1–2 years (see Table S3 for exceptions). For appropriate scale comparisons, all 242 

climate and fishing covariates were z-scored (subtracted the mean and divided by the standard 243 

deviation) prior to dynamic linear modeling. 244 

Modeling climate and fishing effects 245 

We investigated climate and fishing drivers of abundance for each remaining species’ time series 246 

using univariate dynamic linear models (DLMs) (Pole et al., 1994; Lamon III et al., 1998; 247 

Scheuerell et al., 2002). Each log-transformed abundance observation � in year � was modeled 248 

as 249 

 �� = ��T�� + �� (1)    250 

where �� and �� are vectors of regression variables and parameters, respectively, �� are 251 

observation errors with �� ∼ �(0, �), and 252 

 �� = ��−1 + �� (2) 253 

where �� are process errors with �� ~ MVN(�,�) (Holmes et al., 2014). The DLM framework 254 

assumes a locally non-linear relationship between a given response and predictor variable. This 255 

assumption allowed us flexibility to explore numerous response/predictor combinations, 256 

relationships for many of which may not be linear. 257 

For each species, we fitted DLMs for all possible combinations of climate and fishing 258 

covariates with a minimum of zero covariates (intercept-only model) up to one climate and one 259 

fishing covariate (maximum two covariates per model). To reduce multi-collinearity, two-260 

covariate models were not fitted if they contained combinations of covariates that were 261 

significantly correlated (Pearson’s product-moment correlation test, � = 0.1). For each unique 262 

combination of covariates, we considered multiple variance parameterizations for process and 263 

observation errors (Table 2). For models with covariates, process errors in �� were either 1) 264 

assumed independent and identically distributed or 2) assumed independent but potentially 265 

distributed differently. For all models, the � diagonal element corresponding to intercept process 266 

error variance was fixed at zero. Observation error variance (�) was either estimated within the 267 

DLM, or fixed at the average annual percent coefficient of variation estimated from GLM 268 

bootstrapping. For each species, we retained for further analysis all converged models 269 
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(maximum 10,000 iterations, convergence tolerance = 0.9) with ∆AIC� values ≤ 10, where 270 ∆AIC� = AIC� − min (AIC�). Among species, unique combinations of covariates ranged from 23 271 

to 136 and the total model set size including error variance parameterization options ranged from 272 

70 to 488 (Table S3). 273 

For assessing performance of individual models, we obtained expected values of one-year 274 

forecasted abundances with corresponding variances (in log space) calculated using a Kalman 275 

filter algorithm. We checked forecast errors (termed “innovations”) for egregious violations of 276 

normality and independence using Student’s t-Tests and autocorrelation function (� = 0.05), 277 

respectively. We assessed forecast bias by calculating the Root Mean Squared Error (RMSE) for 278 

each forecast series in log space (Hyndman and Koehler, 2006): 279 

 RMSE = �∑ (�� − ��)2/���=1  (3)  280 

where � is the forecast for observation � at time �. 281 

For each retained model, we determined the persistence of its combination of covariates 282 

by comparing time-truncated models to vet the staying power of a given parameter within 283 

models as years were ‘peeled’ off the time series (Mohn, 1999; Miller et al., 2016). This 284 

approach is analogous to examining retrospective patterns in an age-structured stock assessment 285 

model. We generated time-truncated datasets by removing one year of data either at the proximal 286 

or terminal end of the time series. We define ‘persistence’ of a given covariate as 287 

 φ� = ∑ ����������=1  (4) 288 

where ��� is the number of occurrences of covariate � in � truncated models based on full time 289 

series (non-truncated) model �, and �� is the Akaike weight (AICw

To quantify the overall importance of a covariate to all species or a group of species, we 295 

define ‘prevalence’ as 296 

; Burnham and Anderson 290 

2002) for non-truncated model �. The parameter φ is a proportion bounded by 0 and 1. We fixed 291 � at 10; 5 proximal year peels and 5 terminal year peels. For the purposes of calculating φ, lag 292 

identities were removed from covariates. For instance, if model 1 contained ‘lag 0 SOI’ and 293 

model 2 contained ‘lag 1 SOI’, �� would be ‘SOI’ for both.  294 

 Φ� =
∑φ�∑φ     (5) 297 

where ∑φ� is the sum of persistence values for covariate � across species, and ∑φ is the grand 298 

sum of persistence values across species and all covariates. To identify covariates with 299 
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consistently significant unidirectional effects, we quantified an Akaike-weighted index 300 

describing the ‘magnitude of effect’ for time-dynamic regression parameter estimates as 301 

 Γ�,� = ∑ �(���−���)��,��� ���=1 �� (6) 302 

where ��� and ��� are the number of years in which potentially time-varying coefficient 303 

estimates for z-scored covariate � in model � were significantly different from zero at alpha level 304 �, � is the length of time series (always 24 years), and �� is defined as in Eq. 4. Lag identities 305 

were removed from covariates prior to calculating Γ, which is bounded by -1 and 1. Magnitude 306 

of effect also implicitly incorporates covariate persistence; covariates not present in all non-307 

truncated models for a given species are penalized proportional to the sum of the Akaike weights 308 

for models in which the covariate was absent. Species that had significant parameter estimates 309 

with different signs that counteract one another (i.e., sign-switching) will have diminished 310 

magnitude of effect values (i.e., closer to 0). Time-varying parameter estimates that switch signs 311 

may indicate a change in the mechanistic relationship between the variate and covariate. 312 

However, given the exploratory nature of the study, we were only interested in characterizing 313 

covariate effects with consistent unidirectional effects through time. 314 

Multivariate analysis 315 

To compare temporal abundance patterns among species, we conducted multivariate ordination 316 

using z-scored marginal mean GLM predictions. To visualize community-level patterns in 317 

abundance changes, we conducted principal components analysis (PCA) with GLM-generated 318 

mean marginal predictions where each year was a separate descriptor. Sand perch (Diplectrum 319 

formosum) and dusky flounder (Syacium papillosum) were excluded from this analysis due to 320 

extremely low log-space predictions for certain years; these years were excluded in DLMs for 321 

these species.322 

 323 

RESULTS 324 

Linear modeling 325 

Of the 101 coastal fish and invertebrate species modeled using GLMs (Table S4), we 326 

investigated climat and fishing effects for 71 species that had acceptable CVs for ¾ of the 24 327 

year time series (Table 3). Shrimp fishery effort was the most prevalent covariate in dynamic 328 

linear models for all broad taxonomic groups, indicating this was the most common covariate in 329 
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time series models (Table 4). This proxy for bycatch mortality was much more prevalent than 330 

any climate effect. Shrimp fishery effort prevalence (Φ) was 26%, 35%, and 44% for bony 331 

fishes, invertebrates, and elasmobranchs, respectively. Shrimp fishery effort had moderate 332 

(75% < φ ≥ 50%) to high (φ ≥ 75%) persistence in time-truncated models for 12 and 15 333 

species, respectively, indicating that this covariate was retained in the most supported model 334 

more than 50% of the time after removal of up to five years of data from the start or end of the 335 

24 year time series. For comparison, all eight climate variables combined had just 9 species with 336 

moderate persistence. Furthermore, of the 27 species with moderate to high persistence for 337 

shrimp fishery effort, 20 had magnitude of effect values greater than 60% (|Γ| ≥ 0.6), indicating 338 

that estimated regression coefficients for this covariate differed from zero during at least 60% of 339 

years in the time series (Fig. 2). For species with direct harvest data, a ‘landings’ covariate was 340 

also relatively prevalent (22%) in models among bony fishes (Table 4). For three species 341 

(Centropristis striata, Chaetodipterus faber, and Menticirrhus littoralis) landings had a 342 

magnitude of effect of at least 0.7 (Fig. 2). However, the relationship between landings and C. 343 

striata and M. littoralis was positive, indicating possible spurious effects. Strong persistence or 344 

magnitude of effect for a covariate does not verify a mechanistic relationship, but does provide 345 

evidence of a possible linkage between the exogenous factor and stock abundance that should be 346 

vetted further through additional investigation. 347 

Compared to fishing covariates, climate covariates were much less predominant in 348 

species models despite the consideration of eight different climate indices. Among warm-season 349 

climate covariates the Western Bermuda High Index (WBHI) was the most common in DLMs, 350 

with 10% overall prevalence (Table 4), persistence greater than 50% for three species, and 351 

moderate magnitude of effect (|Γ| ≥ 0.5) for four species (Fig. 2). The Pacific North American 352 

Pattern in summer (PNAS) was second-most prevalent for warm-season climate covariates, while 353 

the Atlantic Multi-decadal Oscillation (AMO) and sea bottom temperature anomalies (SBT) 354 

were least prevalent. PNAS was persistent in more than 50% of weighted models for three 355 

species (Table 4). Prevalence values for cold-season climate covariates were also relatively low 356 

for most taxon groups, although the Pacific Decadal Oscillation (PDO) was more prevalent in 357 

invertebrate models (14%). Three species exhibited negative associations with and had moderate 358 

magnitude of effect (Fig. 2) for the PDO: Callinectes similis, Portunus spinimanus, and 359 

Centropristis striata. 360 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Five crustacean species had negative and counterintuitive associations with shrimp 361 

fishery effort (these species are also vulnerable to bycatch), suggesting possible indirect effects 362 

from increased predation from S. tiburo (Fig. 2, Fig. 3). Assumptions of forecast error normality 363 

(t-tests, � = 0.05) and independence (not strongly autocorrelated at lags 1-10) were met for each 364 

species’ most supported model (∆AIC� = 0), results from which are depicted in Fig. S6. Forecast 365 

bias, measured as RMSE, varied more so between species (range 0.23 to 1.81, where zero 366 

indicates no bias) than within models for a given species (Table S5). 367 

Species comparisons 368 

A biplot of the first two principal components explaining the most variation (cumulative 369 

31%) in multispecies abundance predictions illustrates time series trend commonalities among 370 

species and taxon groups (Fig. 4). Notable groupings include five crustacean species (top; 371 

Arenaeus cribrarius, Callinectes sapidus, C. similis, Portunus spinimanus, and Squilla empusa), 372 

four skate and ray species (middle-left; Dasyatis sabina, D. say, Gymnura micrura, and R. 373 

eglanteria), and two common small coastal sharks (bottom; Rhizoprionodon terranovae, Sphyrna 374 

tiburo). Species in quadrant 1 (top right) were more abundant earlier in the time series, species in 375 

quadrant 2 (top left) were abundant during the middle 2000s, while species in quadrant 3 (bottom 376 

left) were more abundant later in the time series. Doryteuthis spp. exhibited an abundance 377 

trajectory different from most other species with peaks near 2000 and 2010 (quadrant 4, bottom 378 

right). A higher number of species with negative PC1 values is consistent with an overall 379 

increase in community abundance throughout the time series (Richardson and Boylan, 2014). A 380 

biplot of the descriptor axes (i.e., years) indicate a period of most rapid change in community 381 

abundances during the 2000s, especially during 2001 to 2004 (Fig. 5). Based on biplot species 382 

groupings, DLM forecasts and regression coefficient estimates for S. tiburo and the five 383 

aforementioned crustaceans are compared in Fig. 3 (see Discussion).384 

 385 

DISCUSSION 386 

The overall goal for this work was to expand general understanding of how exogenous factors 387 

influence abundance dynamics for coastal fishes and invertebrates within the Southeast U.S. 388 

LME. Results indicate that each of the factors described by Link et al. (2010) – trophodynamic, 389 

exploitative, and biophysical – exert influence on the abundance dynamics of several species we 390 
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examined. In many cases taxonomically-related species exhibited synchronous abundance trends 391 

and associations with covariates, suggesting that working knowledge of life history 392 

characteristics provides guidance for explaining these connections. In all cases, our results and 393 

interpretations should be viewed as a foundation for future ecosystem-based research within the 394 

region at finer spatial and temporal scales for each species or taxonomic/trophic group. 395 

Indirect fishing effects on trophodynamics 396 

During the study period, shrimp fleet effort decreased due to an economic downturn in the 397 

fishery (SEDAR, 2014). Five crustaceans and one bony fish species exhibited a positive 398 

relationship with shrimp fishery effort that was persistent and strong magnitude of effect (Fig. 2): 399 

Arenaeus cribrarius, Callinectes sapidus, C. similis, Portunus spinimanus, Squilla empusa, and 400 

Urophycis floridana. While there are no empirical shrimp bycatch time series available for the 401 

U.S. South Atlantic penaeid shrimp fishery, Scott-Denton et al. (2012) and Brown (2014) 402 

provide a snapshot summary of bycatch trends during the late 2000’s. In North Carolina, C. 403 

sapidus, S. empusa, U. floridana, and portunid crabs comprised a total of 9% of non-shrimp 404 

biomass caught in commercial shrimp trawl gear from July 2007 to June 2008 (Brown, 2014). 405 

Throughout the U.S. South Atlantic region, C. sapidus and non-identified ‘crustaceans’ 406 

comprised 19% of all non-shrimp biomass during July 2007 through December 2010 (Scott-407 

Denton et al., 2012). Although bycatch reduction devices (BRDs) have been used within this 408 

fishery within federal waters since 1997/8 (ASMFC, 2011), these species or groups remain 409 

frequently captured within the fishery. Due to the small maximum body size attained by these 410 

species and empirical evidence that they are in fact bycatch, the positive relationship between 411 

abundance and shrimp fishery effort that we found is counterintuitive. 412 

An explanation for the positive relationship between trawling effort and abundance of the 413 

five crustaceans is that the rebound of the bonnethead shark (Sphyrna tiburo) has resulted in 414 

increased top-down control on these species. The shrimp fleet effort time series may be acting as 415 

proxy for the abundance dynamics of this predator known to feed primarily on crustaceans, 416 

especially portunid crabs (Cortés et al. 1996; MAS, unpublished data). The most recent S. tiburo 417 

stock assessment attributes an overall population increase after 2000 in large part to bycatch 418 

reduction following BRD implementation (SEDAR, 2013b). Results from the current study 419 

support this conclusion; S. tiburo abundance was higher overall in the 2000’s compared to the 420 

1990’s (Fig. 3A), and shrimp fishery effort was a moderately persistent (φ ≥ 50%) negative 421 
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predictor with moderate magnitude of effect (|Γ| = 0.7) in the well-fit (RMSE = 0.29) most 422 

supported model for this species. Based on opposing trends of S. tiburo and its prey species (Fig. 423 

3), multi-species modeling is warranted for these trophically-related species. While the 424 

bonnethead is likely not the only predator for these species, it may be acting as a general proxy 425 

for increases in abundance of higher trophic level predators (e.g., Raja eglanteria, Gymnura 426 

micrura) following a reduction in shrimp fishery effort and overall lowered bycatch risk for the 427 

assemblage. 428 

One additional hypothesis for the decline in crustacean abundance within the nearshore 429 

zone is that an overall decrease in bycatch discards by the shrimp fishery has reduced the amount 430 

of carrion available to portunid crabs whose diets include scavenged food. In theory, increased 431 

food availability and decreased energy expenditure on food handling would increase growth rates 432 

and potentially reproductive output. The carrion reduction hypothesis could be tested via 433 

manipulative experiments and inferences based on more robust bycatch data, especially prior to 434 

when BRDs were mandated. Johnson (2006) demonstrated that blue crabs strongly preferred 435 

bycatch carrion to natural prey, lending support for this hypothesis. Changes in bottom-up 436 

(carrion reduction) and top-down (predation increase) trophodynamics could have synergistically 437 

led to an overall decline of one or more of these ecologically-important crustacean species. 438 

Direct fishing effects 439 

Biomass removals from fishing result in a direct decrease in population abundance, yet only one 440 

species out of 35 (Chaetodipterus faber) had a moderate and negative magnitude of effect for the 441 

covariate ‘Landings’ (Fig. 2). Stock status of C. faber has not been formally assessed, but results 442 

indicate that landings may be great enough to elicit a population-level change in abundance. The 443 

covariate fishing mortality (‘Total F’) (Fig. S5) was not persistent in models of any species for 444 

which estimated time series were available from stock assessments. Overall null results for the 445 

fishing covariates ‘Landings’ and ‘Total F’ could be due to 1) bottom-up environmental 446 

conditions or top-down trophodynamics being overriding drivers of abundance dynamics, 2) the 447 

magnitude of landings not being high enough to elicit a detectable population response (i.e., low 448 

exploitation rate), or 3) SEAMAP-SA not being a representative index for the stock. For species 449 

with landings but which are not actively managed, the first and second hypotheses are plausible; 450 

the third is not testable without additional data sources. Of the nine species for which estimated 451 

‘Total F’ time series were available, weakfish (C. regalis), summer flounder (P. dentatus), 452 
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butterfish (P. triacanthus), bluefish (P. saltatrix), and scup (Stenotomus) were based primarily on 453 

data from more northerly areas, thus hypothesis three is likely for these species. While Atlantic 454 

sharpnose (R. terranovae) and bonnethead (S. tiburo) are recognized to exhibit separate Gulf of 455 

Mexico and Atlantic stocks, the most recent update assessment for each species combined these 456 

two regions based on precedent from previous benchmark assessments (SEDAR, 2013a,b). The 457 

spatial mismatch between SEAMAP-SA and assessments for these two coastal sharks may have 458 

resulted in null ‘Total F’ results. 459 

Shrimp fleet effort exhibited a persistent negative association with moderate to strong 460 

magnitude of effect for fourteen species – nine bony fish, four elasmobranch, and one 461 

invertebrate species (Fig. 2). All of these species except two (Persephona mediterranea and 462 

Prionotus carolinus) are documented bycatch species in the region within the penaeid shrimp 463 

trawl fishery (Scott-Denton et al., 2012; Brown, 2014). In all cases, estimated abundances for 464 

these species were higher during the second half of the time series during which shrimp fleet 465 

effort and assumed overall bycatch were lower compared to during the 1990’s. Although 466 

decreases in effort occurred concomitantly with BRD mandates intended to reduce bycatch 467 

mortality, decreased effort may be driving abundance increases for these species more so than 468 

BRDs given that they still remain vulnerable to bycatch in shrimp fishery gears despite BRD 469 

requirements. Elasmobranchs in particular have benefited from this decrease in fishery activity, 470 

indicated by prevalence Φ of 44% for shrimp fishery effort, overall negative associations with 471 

‘Effort’ in all cases (Fig. S6), and documented bycatch impacts to small coastal sharks (SEDAR, 472 

2013b,a). 473 

Biophysical effects 474 

Compared to fishing effects, many fewer species exhibited abundance changes in response to 475 

climate. Among warm-season climate variables, none had outstanding prevalence within species 476 

models. Among cold-season climate variables, the Pacific Decadal Oscillation (PDO) was most 477 

prevalent in invertebrate models, although moderately so, but this covariate had only moderate 478 

persistence in time-truncated models for just three species. The one climate variable that 479 

quantified local environmental conditions, sea bottom temperature (SBT), had particularly low 480 

prevalence values among all taxon groups. Taken together, these unremarkable climate results 481 

are in stark contrast to studies in temperate Northeast U.S. LME waters, where oscillatory 482 

climate patterns and directional ocean warming have been extensively documented to be causing 483 
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dramatic ecological shifts in multiple populations that are major players in the food web (Collie 484 

et al., 2008; Araújo and Bundy, 2012; Nye et al., 2014). In this era of dramatic climate shifts in 485 

more temperate ocean waters, temperature forcing may be inherently less impactful to long-term 486 

distribution and abundance trends of natural living resources within subtropical waters of the 487 

Southeast U.S. LME (Morley et al., 2017). 488 

 Although no species had a strong magnitude of effect for the PDO, this teleconnection 489 

was moderately prevalent (14%) within invertebrate models. The PDO and SOI are related 490 

measures of the complex air-sea interactions characteristic of El Niño Southern Oscillation 491 

(ENSO) events in the tropical Pacific, which confer variability in atmospheric and ocean 492 

conditions across the globe including within the southeast U.S. Atlantic (Alexander et al., 2002). 493 

The influence of PDO on precipitation, river discharge, and estuarine salinity regimes have been 494 

demonstrated for a coastal Georgia river (Sheldon and Burd, 2014) and the Chesapeake Bay (Xu 495 

et al., 2012), but we are not aware of any studies linking the PDO to dynamics of living marine 496 

resources in the southeast U.S. Our results indicate that among cold-season climate indices, the 497 

PDO may be the best amalgamation of winter weather conditions. Morley et al. (2017) also show 498 

winter conditions to affect coastal invertebrate distribution and biomass in subsequent spring and 499 

summer seasons within the Southeast U.S. LME. The influence of the PDO-associated winter 500 

conditions on marine assemblages in the region deserves further investigation. 501 

 In the Northeast U.S. LME, taxonomic and abundance shifts in planktonic communities 502 

have been shown to respond to temperature-related changes induced by multi-decadal climate 503 

oscillations and directional ocean warming (Pershing et al., 2005; Greene and Pershing, 2007; 504 

Morse et al., 2017). Shifts in abundance and composition in lower trophic levels can have 505 

cascading effects for higher trophic level organisms, both big (Wishner et al., 1995) and small 506 

(Beaugrand et al., 2003). Bottom-up trophodynamic effects on fish populations in the Southeast 507 

U.S. LME have been studied (Weinstein et al., 1981; Yoder, 1983; Govoni et al., 2013). 508 

However, evaluating hypotheses regarding lower trophic effects on long-term trends in Southeast 509 

U.S. LME fish and invertebrate populations requires more robust planktonic data sets with 510 

temporal sampling regularity. We are not aware of any local in situ or regional satellite-based 511 

studies examining long-term changes in primary productivity, phytoplankton composition, or 512 

zooplankton within the ecosystem. Given the difficulties of accurately estimating remotely-513 

sensed primary productivity in turbid coastal waters (Siegel et al., 2013), in situ plankton 514 
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sampling concomitant with SEAMAP-SA demersal faunal sampling would provide higher 515 

quality data for investigating benthic-pelagic linkages and bottom-up effects. 516 

Migration phenology 517 

Sampling effort for the SEAMAP-SA coastal trawl survey is focused on the most biodiverse and 518 

biomass-rich areas of soft-bottom habitat within in the Southeast U.S. LME coastal ocean. The 519 

survey does not sample estuarine or offshore habitats that many nearshore species also utilize 520 

during certain seasons. To limit the potential bias in abundance estimates given this sampling 521 

limitation, we only investigated species with an acceptable level of uncertainty in annual 522 

abundance estimates and only in seasons where there were perennially consistent catches. Future 523 

investigations of this dataset could benefit from alternative model frameworks with the goal of 524 

reducing uncertainty in indices of abundance by accounting for spatial and temporal random 525 

effects (e.g., Shelton et al., 2014; Thorson et al., 2015). 526 

Additionally, we recognize that only relative and not absolute indices of abundance can 527 

be derived from SEAMAP-SA and other similar datasets within specialized habitat zones. If our 528 

estimated relative abundance indices were generally biased, we would have expected higher 529 

prevalence of the local environmental covariate sea bottom temperature (SBT), which was 530 

included to detect any annual anomalies in migration phenology induced by seasonal temperature 531 

cues. Out of 71 species, SBT did not have high prevalence for any species group, nor was it 532 

persistent or have strong magnitude of effect for any species. This null result suggests that the 533 

SEAMAP-SA dataset may be largely robust to bias in abundance estimates stemming from 534 

timing differences in seasonal weather patterns. For populations with distributions soundly 535 

within two or more ecosystems (e.g., Southeast and Northeast U.S. LMEs), coordinating the 536 

sampling methods, timing, and coverage of fisheries surveys that are spatial neighbors should be 537 

further emphasized (Blanchard et al., 2008). 538 

Conclusions 539 

Our results suggest that changes in trawling intensity for the penaeid shrimp fishery have been 540 

the most influential determining factor for multi-species patterns of change within the nearshore 541 

Southeast U.S. LME since 1990. Trawling effort and assumed bycatch was high early in the time 542 

series, dropped precipitously from 1999 to 2005, and plateaued at a relatively low level thereafter 543 

(Fig. S2). The period of most rapid change in community composition occurred during the same 544 
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time frame (Fig. 5), resulting in an overall increase in abundance for the majority of nearshore 545 

species. BRD implementation at the onset of this period of rapid change likely accelerated 546 

relative abundance rebounds for many of these species. Prevalence of trawling effort in species-547 

specific DLM results lend support for fishing-induced shifts in overall community abundance 548 

and composition. Due to some level of fishing-induced restructuring apparent in the nearshore 549 

food web, we reiterate the call by Marancik and Hare (2007) for the establishment of long-term 550 

diet sampling programs in the Southeast U.S. LME; such programs have enabled informative 551 

multi-species modeling efforts in the Northeast U.S. Shelf LME (Link et al., 2012) and North 552 

Pacific (Livingston et al., 2017). 553 

During the same time frame that shrimp trawling intensity was rapidly decreasing, the 554 

PDO and SOI underwent rapid but short-lived phase shifts (Mills and Walsh, 2013). The AMO 555 

also entered a positive phase around the year 2000 (Nye et al., 2014), thus further adding to 556 

possible confounded effects of fishing and climate. Longer biological time series are needed to 557 

clarify the impacts of these low-frequency climate signals on fish abundance. In the interim, the 558 

simplest explanation is that direct anthropogenic impacts from fishing have exerted the most 559 

influence on this system. 560 

Future directions 561 

Although we detected fishing, climate, and indirect trophodynamic effects for several species, 562 

the majority of species exhibited inconsistent or undetectable responses to climate and fishing 563 

covariates. The overall lack of explanatory power for any given species is likely a product of 564 

simultaneous and complex forcing from fishing, the physical environment, biological 565 

interactions, and density-dependent effects, often making it difficult to establish unequivocal 566 

linkages between changes in the physical environment and stock abundance (Ottersen et al., 567 

2004; Rijnsdorp et al., 2009; Megrey et al., 2009; Deyle et al., 2013). Investigating ecosystem 568 

linkages is made more challenging by incomplete life history and catch information. In the 569 

Southeast U.S. LME, future species-specific analyses investigating exogenous drivers would 570 

benefit from more complete age composition data, greater extent of diet characterization 571 

(especially for upper trophic level predators), and species-specific bycatch rates. 572 

Specific to climate impacts, a more refined understanding is needed of how 573 

teleconnections influence local-scale oceanographic conditions relevant to populations in coastal 574 

waters of the Southeast U.S. LME (e.g., temperature, salinity, wind, and planktonic 575 
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productivity). Broad-scale climate indices amalgamate these local variables and thus have their 576 

advantages in ecological modeling (Stenseth et al., 2003). However, organisms respond to 577 

conditions in their proximate environment at much finer temporal and spatial scales than annual 578 

climate indices can capture. As such, future climate-fisheries studies within the region should not 579 

only investigate correlations between large-scale climate effects and populations, but the effects 580 

of large-scale climate forcing on specific oceanographic conditions that in turn produce a 581 

detectable population-level effect. 582 
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TABLES  1 

Table 1. Descriptions of climate covariates considered in dynamic linear models. Correlation 2 

values ( ,   or  ) are for the period of 1988–2013. Time series for all climate covariates are 3 

depicted in Fig. S2, except for Sea Bottom Temperature which is depicted in Fig. S3. 4 

 5 

Covariate Calculation 

Impacts to southeast U.S. Atlantic 

conditions 

Atlantic Multi-decadal 

Oscillation (AMO) 

Area-weighted average of 

North Atlantic SST from 0–

70˚N latitude, detrended and 

unsmoothed (NCAR, 2013); 

average of monthly values 

during May–Sep  

  ( ) phase: ↑ (↓) SST, ↑ (↓) precipitation 

during Aug – Oct, ↑ (↓) tropical cyclone 

activity (Enfield et al., 2001; Wang et al., 

2008). Correlated with NAO (0.44, ) and 

PNAW (0.43, ). 

North Atlantic 

Oscillation (NAO) 

Principal component (PC)-

based sea level pressure 

anomalies over the Atlantic 

sector (20–80˚N, 90˚W–

40˚E) (NCAR, 2015); 

average of monthly winter 

(Dec–Mar) values  

  ( ) phase: ↑ (↓) temperatures (Joyce, 2002; 

Bridgman and Oliver, 2006); correlated with 

AMO (0.44, ) 

Pacific Decadal 

Oscillation (PDO) 

Statistical reconstruction of 

in situ SST in the North 

Pacific Ocean (NCDC, 

2015); average of monthly 

winter (Dec–Mar) values  

  ( ) phase: ↓ (↑) temperatures and possibly 

↑ (↓) precipitation in winter (Mantua and 

Hare, 2002; SCO, 2015); correlated with 

PNAW (0.50, ) and SOI (0.61, ) 

Pacific North-

American Pattern, 

summer (PNAS) and 

winter (PNAW) 

Anomalies in the 500mb 

geopotential height field 

observed over the western 

and eastern U.S. (CPC, 

2015a); average of monthly 

summer (PNAS; May–Sep) 

PNAS: ↑ (↓) warm-season precipitation 

(Henderson and Vega, 1996); correlated with 

WBHI (0.34, ) 

PNAW:   ( ) phase: ↓ (↑) winter 

temperatures (Leathers et al., 1991; SCO, 

2015); correlated with AMO (0.43, ), PDO 
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and winter (PNAW; Dec–

Mar) values 

(0.50, ) and SOI (0.50, ) 

Southern Oscillation 

Index (SOI) 

Normalized sea level 

pressure differences 

between Tahiti and Darwin, 

Australia (CPC, 2015b); 

average of monthly winter 

(Dec–Mar) values 

  ( ) phase: La Niña (El Niño); ↑ (↓) 

temperatures and ↓ (↑) precipitation in winter 

(Joyce, 2002); correlated with PDO (0.57, ) 

and PNAW (0.50, ). Driven by sea surface 

temperature (Bridgman and Oliver, 2006). 

Western Bermuda 

High Index (WBHI) 

Pressure differences (850-

hPa heights) between the 

Blake Plateau (30˚N, 75˚W) 

and New Orleans (30˚N, 

92˚W) (Kalnay et al., 1996); 

average of monthly values 

during May–Sep (see 

Supporting Information) 

  ( ) phase: ↑ (↓) summer precipitation, 

similar to the better known Bermuda High 

Index (BHI) (Henderson and Vega, 1996; 

Diem, 2013); correlated with PNAS (0.34, ) 

Sea Bottom 

Temperature (SBT) 

anomaly 

SEAMAP-SA tow-level 

data; annual average of z-

scored anomalies for each 

combination of season and 

sub-region combination (see 

Supporting Information) 

Proxy for temporal changes in availability of 

species due to variation in temperature-

induced seasonal or extreme event migration 

patterns 
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Table 2. Variance parameterizations for each unique combination of covariates. Process error variances for covariates were specified 7 

on the diagonal of the   matrix (see Eq. 2). Observation error variance   (see Eq. 1) was either estimated by dynamic linear modeling 8 

or fixed at the average annual coefficient of variation estimated from GLM bootstrapping. 9 

No. of covariates Q options   options Model set size 

Zero (intercept-only model) 1) Intercept   estimated 1) estimated, 2) fixed 2 

One (1 climate or 1 fishing) 1) Covariate   estimated 1) estimated, 2) fixed 3 

Two (1 climate and 1 fishing) 1) Covariate  's estimated, assumed equal 

2) Covariate  's estimated, assumed unequal 

1) estimated, 2) fixed 4 

 10 
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Table 3. Species for which climate and fishing effects were investigated using dynamic linear 11 

models. Species for three genera (Eucinostomus, Stenotomus, Doryteuthis) were grouped for 12 

analysis due to difficulties of rapid on-board survey taxonomic identification. Species 13 

identification numbers are referenced in Table 4. 14 

  Latin name Common name   Latin name Common name 

Bony fishes 

 

Bony fishes cont’d 

 1 Ancylopsetta ommata Ocellated flounder 38 Sphyraena guachancho Guaguanche 

2 Bairdiella chrysoura Silver perch 39 Stellifer lanceolatus Star drum 

3 Centropristis philadelphica Rock sea bass 40 Stenotomus spp. Scup / Longspine porgy 

4 Centropristis striata Black sea bass 41 Stephanolepis hispida Planehead filefish 

5 Chaetodipterus faber Atlantic spadefish 42 Syacium papillosum Dusky flounder 

6 Chilomycterus schoepfii Striped burrfish 43 Symphurus plagiusa Blackcheek tonguefish 

7 Chloroscombrus chrysurus Atlantic bumper 44 Synodus foetens Inshore lizardfish 

8 Citharichthys macrops Spotted whiff 45 Trachinotus carolinus Florida pompano 

9 Citharichthys spilopterus Bay whiff 46 Trichiurus lepturus Atlantic cutlassfish 

10 Cynoscion nothus Silver seatrout 47 Trinectes maculatus Hogchoker 

11 Diplectrum formosum Sand perch 48 Urophycis floridana Southern hake 

12 Echeneis naucrates Sharksucker Elasmobranchs 

 13 Etropus crossotus Fringed flounder 49 Dasyatis sabina Atlantic stingray 

14 Etropus cyclosquamus Shelf flounder 50 Dasyatis say Bluntnose stingray 

15 Eucinostomus spp. Mojarras 51 Gymnura micrura Smooth butterfly ray 

16 Lagodon rhomboides Pinfish 52 Mustelus canis Smooth dogfish 

17 Larimus fasciatus Banded drum 53 Raja eglanteria Clearnose skate 

18 Leiostomus xanthurus Spot 54 Rhinoptera bonasus Cownose ray 

19 Menticirrhus americanus Southern kingfish 55 Rhizoprionodon 

terraenovae 

Atlantic sharpnose shark 

20 Menticirrhus littoralis Gulf kingfish 

21 Micropogonias undulatus Atlantic croaker 56 Sphyrna tiburo Bonnethead shark 

22 Opisthonema oglinum Atlantic thread herring Invertebrates  

23 Orthopristis chrysoptera Pigfish 57 Arenaeus cribrarius Speckled swimming crab 

24 Paralichthys albigutta Gulf flounder 58 Callinectes ornatus Ornate blue crab 

25 Paralichthys dentatus Summer flounder 59 Callinectes sapidus Blue crab 

26 Paralichthys lethostigma Southern flounder 60 Callinectes similis Lesser blue crab 

27 Peprilus paru Harvestfish 61 Doryteuthis spp. Inshore squids 

28 Peprilus triacanthus Butterfish 62 Hepatus epheliticus Calico box crab 

29 Pomatomus saltatrix Bluefish 63 Litopenaeus setiferus Northern white shrimp 

30 Prionotus carolinus Northern searobin 64 Lolliguncula brevis Atlantic brief squid 

31 Prionotus evolans Striped searobin 65 Ovalipes ocellatus Lady crab 

32 Prionotus tribulus Bighead searobin 66 Ovalipes stephensoni Coarsehand lady crab 

33 Sardinella aurita Spanish sardine 67 Pagurus pollicaris Flatclaw hermit crab 
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34 Scomberomorus cavalla King mackerel 68 Persephona mediterranea Mottled purse crab 

35 Scomberomorus maculatus Spanish mackerel 69 Portunus gibbesii Iridescent swimming crab 

36 Scophthalmus aquosus Windowpane 70 Portunus spinimanus Blotched swimming crab 

37 Selene setapinnis Atlantic moonfish 71 Squilla empusa Mantis shrimp 
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Table 4. Prevalence   (Eq. 5) of climate and fishing covariates in time-truncated dynamic linear models, and species with at least 50% 15 

persistence   (Eq. 4) for a given covariate. Species identification numbers referenced for persistence are specified in Table 3. 16 

Landings and total fishing mortality information were available for 35 and 9 species, respectively. Prevalence percentages are 17 

calculated separately for all species (‘All’), bony fishes (BF), elasmobranchs (E), and invertebrates (I). Species with persistence 18       are bolded and those with        are also asterisked.  19 

Type Covariate No. of 

species 

Prevalence   Species with persistence       

(numbers refer to species in Table 3) All BF E I 

Warm WBHI 71 10% 11% 10% 8% 1, 29, 46 

PNAS 71 8% 8% 8% 9% 5, 6, 62 

AMO 71 5% 5% 5% 4%  

SBT 71 4% 5% 3% 4%  

Cold PDO 71 9% 8% 8% 14% 4 

SOI 71 7% 6% 5% 9% 30 

PNAW 71 7% 7% 6% 7% 28 

NAO 71 4% 5% 1% 3%  

Fishing Shrimp 

fishery 

effort 

71 30% 26% 44% 35% BF: 1, 6, 7, 12, 16, 17, 21, 28, 30, 31, 37, 43, 45, 46, 48   

E:    49, 50, 51, 52, 53, 56 

I:     57*, 59, 60*, 68, 70, 71 

Landings 35 19% 22% 5% 11% 4, 5, 20, 36  

Total F 9 10% 10% 12%   

Intercept None 71 4% 4% 3% 4%  

 20 
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